European Journal of Chemistry

Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract

Crossmark


Main Article Content

Mohammad Ali Ebrahimzadeh
Seyedeh Roya Alizadeh
Zahra Hashemi

Abstract

The green technique is a unique way to produce functional nanoparticles. We examined the green synthesis of Ag nanoparticles (O-AgNPs) by the extract of Oxalis corniculata. Green-synthesized O-AgNPs were accomplished by monitoring critical factors such as concentration, pH, reaction time, and temperature. Several analytical techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and UV-Vis spectroscopy, were applied to characterize O-AgNPs. The SEM analysis showed O-AgNPs with a spherical shape and an average size of 33.57 nm. The XRD pattern indicated the face-centered cubic (fcc) structure of the prepared O-AgNPs. The anticancer activity of the synthesized O-AgNPs was investigated in MCF-7 (breast) and AGS (gastric) cell lines, indicating high anticancer effects against selected cell lines. The growth of all selected bacteria containing Gram+ and Gram- was inhibited by O-AgNPs. O-AgNPs showed greater inhibition in comparison to conventional antibiotics. As a result, our green synthesized AgNPs using plant extracts exhibited anticancer and antibacterial activities.


icon graph This Abstract was viewed 427 times | icon graph Article PDF downloaded 150 times

How to Cite
(1)
Ebrahimzadeh, M. A.; Alizadeh, S. R.; Hashemi, Z. Discovery of High Antibacterial and Antitumor Effects Against Multi-Drug Resistant Clinically Isolated Bacteria and MCF-7 and AGS Cell Lines by Biosynthesized Silver Nanoparticles Using Oxalis Corniculata Extract. Eur. J. Chem. 2023, 14, 202-210.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Anu, K.; Devanesan, S.; Prasanth, R.; AlSalhi, M. S.; Ajithkumar, S.; Singaravelu, G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud Univ. Sci. 2020, 32, 2520-2526.
https://doi.org/10.1016/j.jksus.2020.04.018

[2]. Chang, Y.-N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 2012, 5, 2850-2871.
https://doi.org/10.3390/ma5122850

[3]. Majumdar, M.; Shivalkar, S.; Pal, A.; Verma, M. L.; Sahoo, A. K.; Roy, D. N. Nanotechnology for enhanced bioactivity of bioactive compounds. In Biotechnological Production of Bioactive Compounds; Elsevier, 2020; pp. 433-466.
https://doi.org/10.1016/B978-0-444-64323-0.00015-1

[4]. Ebrahimzadeh, M. A.; Tafazoli, A.; Akhtari, J.; Biparva, P.; Eslami, S. Engineered silver nanoparticles, A new nanoweapon against cancer. Anticancer Agents Med. Chem. 2019, 18, 1962-1969.
https://doi.org/10.2174/1871520618666180808093040

[5]. Agarwal, M.; Murugan, M. S.; Sharma, A.; Rai, R.; Kamboj, A.; Sharma, H.; Roy, S. K. Nanoparticles and its toxic effects: A review. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 76-82.

[6]. Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; Lin, C.; Leach, C.; Cannady, R. S.; Cho, H.; Scoppa, S.; Hachey, M.; Kirch, R.; Jemal, A.; Ward, E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220-241.
https://doi.org/10.3322/caac.21149

[7]. Misra, R.; Acharya, S.; Sahoo, S. K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 2010, 15, 842-850.
https://doi.org/10.1016/j.drudis.2010.08.006

[8]. Alizadeh, S. R.; Ebrahimzadeh, M. A. Characterization and anticancer activities of green synthesized CuO nanoparticles, A review. Anticancer Agents Med. Chem. 2021, 21, 1529-1543.
https://doi.org/10.2174/1871520620666201029111532

[9]. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature 2020, 578, 82-93.

[10]. Caputo, F.; De Nicola, M.; Ghibelli, L. Pharmacological potential of bioactive engineered nanomaterials. Biochem. Pharmacol. 2014, 92, 112-130.
https://doi.org/10.1016/j.bcp.2014.08.015

[11]. Vinardell, M. P.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel) 2015, 5, 1004-1021.
https://doi.org/10.3390/nano5021004

[12]. Hashemi, Z.; Ebrahimzadeh, M. A.; Biparva, P.; Mortazavi-Derazkola, S.; Goli, H. R.; Sadeghian, F.; Kardan, M.; Rafiei, A. Biogenic silver and zero-Valent iron nanoparticles by Feijoa: Biosynthesis, characterization, cytotoxic, antibacterial and antioxidant activities. Anticancer Agents Med. Chem. 2020, 20, 1673-1687.
https://doi.org/10.2174/1871520620666200619165910

[13]. Ebrahimzadeh, M. A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem. 2020, 94, 103425.
https://doi.org/10.1016/j.bioorg.2019.103425

[14]. Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A.; Amiri, O.; Goli, H. R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloys Compd. 2020, 820, 153186.
https://doi.org/10.1016/j.jallcom.2019.153186

[15]. Shirzadi-Ahodashti, M.; Mizwari, Z. M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S. M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ. Technol. Innov. 2021, 23, 101607.
https://doi.org/10.1016/j.eti.2021.101607

[16]. Hashemi, Z.; Mohammadyan, M.; Naderi, S.; Fakhar, M.; Biparva, P.; Akhtari, J.; Ebrahimzadeh, M. A. Green synthesis of silver nanoparticles using Ferula persica extract (Fp-NPs): Characterization, antibacterial, antileishmanial, and in vitro anticancer activities. Mater. Today Commun. 2021, 27, 102264.
https://doi.org/10.1016/j.mtcomm.2021.102264

[17]. Shirzadi-Ahodashti, M.; Hashemi, Z.; Mortazavi, Y.; Khormali, K.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M. A. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126383.
https://doi.org/10.1016/j.colsurfa.2021.126383

[18]. Ebrahimzadeh, M. A.; Hashemi, Z.; Mohammadyan, M.; Fakhar, M.; Mortazavi-Derazkola, S. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf. Interfaces 2021, 23, 100963.
https://doi.org/10.1016/j.surfin.2021.100963

[19]. Ranjbar, T.; Hashemi, Z.; Sadeghian, F.; Goli, H. R.; Ahanjan, M.; Ebrahimzadeh, M. A. Green Synthesis of Silver Nanoparticles with Allium paradoxum Extract and Evaluation of their Antibacterial Activities. Journal of Mazandaran University of Medical Sciences 2020, 29, 1-11.

[20]. Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys. 2011, 129, 558-563.
https://doi.org/10.1016/j.matchemphys.2011.04.068

[21]. Kanipandian, N.; Kannan, S.; Ramesh, R.; Subramanian, P.; Thirumurugan, R. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater. Res. Bull. 2014, 49, 494-502.
https://doi.org/10.1016/j.materresbull.2013.09.016

[22]. Reddy, N. J.; Nagoor Vali, D.; Rani, M.; Rani, S. S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 34, 115-122.
https://doi.org/10.1016/j.msec.2013.08.039

[23]. Dinesh, D.; Murugan, K.; Madhiyazhagan, P.; Panneerselvam, C.; Kumar, P. M.; Nicoletti, M.; Jiang, W.; Benelli, G.; Chandramohan, B.; Suresh, U. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol. Res. 2015, 114, 1519-1529.
https://doi.org/10.1007/s00436-015-4336-z

[24]. Sukirtha, R.; Priyanka, K. M.; Antony, J. J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem. 2012, 47, 273-279.
https://doi.org/10.1016/j.procbio.2011.11.003

[25]. Kaur, G.; Kalia, A.; Sodhi, H. S. Size controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations. Inorg. Nano-met. Chem. 2020, 50, 35-41.
https://doi.org/10.1080/24701556.2019.1661466

[26]. Das, B.; De, A.; Podder, S.; Das, S.; Ghosh, C. K.; Samanta, A. Green biosynthesis of silver nanoparticles using Dregea volubilis flowers: Characterization and evaluation of antioxidant, antidiabetic and antibacterial activity. Inorg. Nano-met. Chem. 2021, 51, 1066-1079.
https://doi.org/10.1080/24701556.2020.1814331

[27]. Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M. R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine 2018, 13, 8013-8024.
https://doi.org/10.2147/IJN.S189295

[28]. Kirtikar, K.; Basu, B.; Blatter, E. Indian medicinal plants. International Book Distributors, Delhi, India, Lalit Mohan Basu, Allahabad, India, 1935. https://www.indianculture.gov.in/ebooks/indian-medicinal-plants (accessed January 10, 2022).

[29]. Sarkar, T.; Ghosh, P.; Poddar, S.; Choudhury, S.; Sarkar, A.; Chatterjee, S. Oxalis corniculata Linn. (Oxalidaceae): A brief review. J. Pharmacogn. Phytochem. 2020, 9, 651-655.
https://doi.org/10.22271/tpi.2020.v9.i7a.5049

[30]. Khan, M. R.; Marium, A.; Shabbir, M.; Saeed, N.; Bokhari, J. Antioxidant and hepatoprotective effects of Oxalis corniculata against carbon tetrachloride (CCl4) induced injuries in rat. Afr. J. Pharm. Pharmacol. 2012, 6, 2255-2267.
https://doi.org/10.5897/AJPP11.370

[31]. Salahuddin, H.; Mansoor, Q.; Batool, R.; Farooqi, A. A.; Mahmood, T.; Ismail, M. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line. Cell. Mol. Biol. (Noisy-le-grand) 2016, 62, 60-63.

[32]. Rehman, A.; Rehman, A.; Ahmad, I. Antibacterial, antifungal, and insecticidal potentials ofOxalis corniculataand its isolated compounds. Int. J. Anal. Chem. 2015, 2015, 1-5.
https://doi.org/10.1155/2015/842468

[33]. Rahman, M. S.; Khan, M. M. H.; Jamal, M. A. H. M. Anti-bacterial Evaluation and Minimum Inhibitory Concentration Analysis of Oxalis corniculata and Ocimum santum against Bacterial Pathogens. Biotechnology (Faisalabad) 2010, 9, 533-536.
https://doi.org/10.3923/biotech.2010.533.536

[34]. Durgawale, P. P.; Hendre, A. S.; Phatak, R. S. Gc/ms characterization, antioxidant and free radical scavenging capacities of methanolic extract of Oxalis corniculata Linn: An ayurvedic herb. Rasayan J. Chem. 2015, 8, 271-278.

[35]. Kritikar, K. R.; Basu, B. D. Indian Medicinal Plants. In: Compositae, Vol. 2; nternational Book Distributors: Dehradun, 1987.

[36]. Hashemi, Z.; Mizwari, Z. M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ali Ebrahimzadeh, M. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arab. J. Chem. 2022, 15, 103525.
https://doi.org/10.1016/j.arabjc.2021.103525

[37]. Alizadeh, S. R.; Seyedabadi, M.; Montazeri, M.; Khan, B. A.; Ebrahimzadeh, M. A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023, 296, 127240.
https://doi.org/10.1016/j.matchemphys.2022.127240

[38]. Sandeep, S.; S. Santhosh, A.; Kumara Swamy, N.; S. Suresh, G.; S. Melo, J.; Mallu, P. Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. Adv. Mater. Lett. 2016, 7, 383-389.
https://doi.org/10.5185/amlett.2016.6067

[39]. Pandit, R. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusant. Biosci. 1970, 7, 15-19.
https://doi.org/10.13057/nusbiosci/n070103

[40]. Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 2015, 345, 329-336.
https://doi.org/10.1016/j.apsusc.2015.03.176

[41]. Kumar, B.; Kumari, S.; Cumbal, L.; Debut, A. Lantana camara berry for the synthesis of silver nanoparticles. Asian Pac. J. Trop. Biomed. 2015, 5, 192-195.
https://doi.org/10.1016/S2221-1691(15)30005-8

[42]. Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K. S.; Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces 2013, 108, 80-84.
https://doi.org/10.1016/j.colsurfb.2013.02.033

[43]. Bose, D.; Chatterjee, S. Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol. 2015, 55, 163-167.
https://doi.org/10.1007/s12088-015-0512-1

[44]. Nasrollahi, A.; Pourshamsian, K.; Mansourkiaee, P. Antifungal activity of silver nanoparticles on some of fungi. International journal of nano dimension 2011, 1, 233-239.

[45]. Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V. Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93.
https://doi.org/10.1186/1556-276X-8-93

[46]. Haggag, E. G.; Elshamy, A. M.; Rabeh, M. A.; Gabr, N. M.; Salem, M.; Youssif, K. A.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U. R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomedicine 2019, 14, 6217-6229.
https://doi.org/10.2147/IJN.S214171

[47]. Jacob, S. J. P.; Prasad, V. L. S.; Sivasankar, S.; Muralidharan, P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food Chem. Toxicol. 2017, 109, 951-956.
https://doi.org/10.1016/j.fct.2017.03.066

[48]. Lakshmanan; Sathiyaseelan; Kalaichelvan; Murugesan Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala Int. J. Mod. Sci. 2018, 4, 61-68.
https://doi.org/10.1016/j.kijoms.2017.10.007

[49]. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 36-43.
https://doi.org/10.1016/j.msec.2015.08.018

[50]. Al-Sheddi, E. S.; Farshori, N. N.; Al-Oqail, M. M.; Al-Massarani, S. M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A. A.; Siddiqui, M. A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, 9390784.
https://doi.org/10.1155/2018/9390784

[51]. Jadhav, K.; Deore, S.; Dhamecha, D.; H R, R.; Jagwani, S.; Jalalpure, S.; Bohara, R. Phytosynthesis of silver nanoparticles: Characterization, biocompatibility studies, and anticancer activity. ACS Biomater. Sci. Eng. 2018, 4, 892-899.
https://doi.org/10.1021/acsbiomaterials.7b00707

[52]. Mollick, M. M. R.; Rana, D.; Dash, S. K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem. 2019, 12, 2572-2584.
https://doi.org/10.1016/j.arabjc.2015.04.033

[53]. Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B 2017, 170, 225-234.
https://doi.org/10.1016/j.jphotobiol.2017.03.023

[54]. Kummara, S.; Patil, M. B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study. Biomed. Pharmacother. 2016, 84, 10-21.
https://doi.org/10.1016/j.biopha.2016.09.003

[55]. Abdelghany, T. M.; Al-Rajhi, A. M. H.; Al Abboud, M. A.; Alawlaqi, M. M.; Ganash Magdah, A.; Helmy, E. A. M.; Mabrouk, A. S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. Bionanoscience 2018, 8, 5-16.
https://doi.org/10.1007/s12668-017-0413-3

[56]. Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, e1701503.
https://doi.org/10.1002/adhm.201701503

[57]. Jayashree, S.; Vani, G. S. In vitro study on antibacterial activity of aqueous extract and silver nanoparticles of Andrographis paniculata. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 400-406.
https://doi.org/10.20546/ijcmas.2016.505.041

[58]. Elgorban, A. M.; Al-Rahmah, A. N.; Sayed, S. R.; Hirad, A.; Mostafa, A. A.-F.; Bahkali, A. H. Antimicrobial activity and green synthesis of silver nanoparticles usingTrichoderma viride. Biotechnol. Biotechnol. Equip. 2016, 30, 299-304.
https://doi.org/10.1080/13102818.2015.1133255

[59]. Prasannaraj, G.; Venkatachalam, P. Green engineering of biomolecule-coated metallic silver nanoparticles and their potential cytotoxic activity against cancer cell lines. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 025001.
https://doi.org/10.1088/2043-6254/aa6d2c

[60]. Abdel-Fattah, W. I.; W Ali, G. On the anti-cancer activities of silver nanoparticles. J. Appl. Biotechnol. Bioeng. 2018, 5, 43-46.
https://doi.org/10.15406/jabb.2018.05.00116

[61]. Firdhouse, J.; Lalitha, P. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog. Biomater. 2015, 4, 113-121.
https://doi.org/10.1007/s40204-015-0042-2

[62]. Salehi, S.; Shandiz, S. A. S.; Ghanbar, F.; Darvish, M. R.; Ardestani, M. S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomedicine 2016, 11, 1835-1846.
https://doi.org/10.2147/IJN.S99882

[63]. Saravanan, M.; Barabadi, H.; Ramachandran, B.; Venkatraman, G.; Ponmurugan, K. Emerging plant-based anti-cancer green nanomaterials in present scenario. In Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability; Elsevier, 2019; pp. 291-318.
https://doi.org/10.1016/bs.coac.2019.09.001

[64]. Barabadi, H.; Hosseini, O.; Damavandi Kamali, K.; Jazayeri Shoushtari, F.; Rashedi, M.; Haghi-Aminjan, H.; Saravanan, M. Emerging theranostic silver nanomaterials to combat lung cancer: A systematic review. J. Cluster Sci. 2020, 31, 1-10.
https://doi.org/10.1007/s10876-019-01639-z

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).