European Journal of Chemistry

Computational insights into the corrosion inhibition potential of some pyridine derivatives: A DFT approach

Crossmark


Main Article Content

Abhinay Thakur
Ashish Kumar

Abstract

In the present investigation, the corrosion inhibition potency of five pyridine derivatives was computationally simulated and investigated by utilizing the Density Functional Theory (DFT) technique using a basis set of B3LYP/6-31++G (d,p). The predicted corrosion inhibition capacity was shown to improve in the order of 6-(trifluoromethyl) nicotinic acid > 4-(trifluoromethyl) nicotinic acid > N-methyl-4-chloropyridine-2-carboxamide > 2-chloro-6-trifluoromethylnicotinic acid > methyl 2-aminopyridine-4-carboxylate. Anticorrosion potentials were predicted using quantum chemical variables such as energy gap (∆E) i.e. HOMO-LUMO, ionization potential (I), electron affinity (A), proportion of electrons transmitted (∆N), hardness (η), softness (σ) and electronegativity (χ) of chemical species. It was often observed that the corrosion inhibiting rate improved with enhancement of EHOMO, σ, and reduced ELUMO, ∆E and η. Additionally, the electrostatic potential (ESP) mapping revealed that the heteroatoms, including the oxygen and nitrogen atoms, were the regions of anticipated electrophilic attack. This meant that atoms of oxygen and nitrogen could form bonds between the metallic substrate atoms and the investigated inhibitors. With the findings obtained, 4-methyl-2-aminopyridine-4-carboxylate showed the highest EHOMO (-0.23167 eV), softness (12.40694 eV-1) and the lowest ELUMO (-0.7047 eV), energy gap (0.1612 eV) and hardness (0.15107 eV), therefore revealed the excellent corrosion inhibiting attribution for several crucial metals and alloys, including aluminum, mild steel, stainless steel, zinc, brass, copper, etc.


icon graph This Abstract was viewed 396 times | icon graph Article PDF downloaded 169 times

How to Cite
(1)
Thakur, A.; Kumar, A. Computational Insights into the Corrosion Inhibition Potential of Some Pyridine Derivatives: A DFT Approach. Eur. J. Chem. 2023, 14, 246-253.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Bawazeer, T. M.; El-Ghamry, H. A.; Farghaly, T. A.; Fawzy, A. Novel 1,3,4-thiadiazolethiosemicarbazones derivatives and their divalent cobalt-complexes: Synthesis, characterization and their efficiencies for acidic corrosion inhibition of carbon steel. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1609-1620.
https://doi.org/10.1007/s10904-019-01308-8

[2]. Li, P.; School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China Corrosion inhibition effect of N-(4-diethylaminobenzyl) Quaternary ammonium chitosan for X80 pipeline steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 2021, 150931.
https://doi.org/10.20964/2021.01.07

[3]. Cui, M.; Key Laboratory of Impact and Safety Engineering, Ministry of Education, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China Microwave synthesis of Eco-friendly nitrogen doped carbon dots for the corrosion inhibition of Q235 carbon steel in 0.1 M HCl. Int. J. Electrochem. Sci. 2021, 151019.
https://doi.org/10.20964/2021.01.47

[4]. Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.-M.; Kumar, A. Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: Insights from experimental and quantum chemical studies. Surf. Interfaces 2020, 20, 100542.
https://doi.org/10.1016/j.surfin.2020.100542

[5]. Thakur, A.; Sharma, S.; Ganjoo, R.; Assad, H.; Kumar, A. Anti-corrosive potential of the sustainable corrosion inhibitors based on biomass waste: A review on preceding and perspective research. J. Phys. Conf. Ser. 2022, 2267, 012079.
https://doi.org/10.1088/1742-6596/2267/1/012079

[6]. Thakur, A.; Kumar, A.; Sharma, S.; Ganjoo, R.; Assad, H. Computational and experimental studies on the efficiency of Sonchus arvensis as green corrosion inhibitor for mild steel in 0.5 M HCl solution. Mater. Today 2022, 66, 609-621.
https://doi.org/10.1016/j.matpr.2022.06.479

[7]. Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.-M.; Kumar, A. Corrosion inhibition performance of acarbose on mild steel corrosion in acidic medium: An experimental and computational study. Arab. J. Sci. Eng. 2020, 45, 4773-4783.
https://doi.org/10.1007/s13369-020-04514-6

[8]. Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings 2022, 12, 1459.
https://doi.org/10.3390/coatings12101459

[9]. Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.-M.; Kumar, A. Computational and experimental studies on Phenylephrine as anti-corrosion substance of mild steel in acidic medium. J. Mol. Liq. 2019, 293, 111539.
https://doi.org/10.1016/j.molliq.2019.111539

[10]. Razizadeh, M.; Mahdavian, M.; Ramezanzadeh, B.; Alibakhshi, E.; Jamali, S. Synthesis of hybrid organic-inorganic inhibitive pigment based on basil extract and zinc cation for application in protective construction coatings. Constr. Build. Mater. 2021, 287, 123034.
https://doi.org/10.1016/j.conbuildmat.2021.123034

[11]. Jimoh, I.; Usman, B. Corrosion Inhibition Potential of Ethanol Extract of Acacia nilotica Leaves on Mild Steel in an Acidic Medium. Port. Electrochim. Acta 2021, 39, 105-128.
https://doi.org/10.4152/pea.202102105

[12]. Fouda, A. E. S.; Motaal, S. M. A.; Ahmed, A. S.; Sallam, H. B. Corrosion protection of carbon steel in 2M HCl using Aizoon canariense extract. Biointerface Res. Appl. Chem. 2021, 12, 230-243.
https://doi.org/10.33263/BRIAC121.230243

[13]. Bashir, S.; Sharma, V.; Dhaundiyal, P.; Shafi, N.; Kumar, A. Gymneme Sylvestre as a green corrosion inhibitor for aluminum in an acidic medium. Port. Electrochim. Acta 2021, 39, 199-212.
https://doi.org/10.4152/pea.2021390304

[14]. Zadeh, F. M. H.; Khaleghi, M.; Bordbar, S.; Jafari, A. Myrtus communis extract: a bio-controller for microbial corrosion induced by sulphate reducing bacteria. Corros. Eng. Sci. Technol. 2021, 56, 269-278.
https://doi.org/10.1080/1478422X.2020.1850401

[15]. Sharma, S.; Ganjoo, R.; Kr. Saha, S.; Kang, N.; Thakur, A.; Assad, H.; Sharma, V.; Kumar, A. Experimental and theoretical analysis of baclofen as a potential corrosion inhibitor for mild steel surface in HCl medium. J. Adhes. Sci. Technol. 2021, 1-26.
https://doi.org/10.1080/01694243.2021.2000230

[16]. Thakur, A.; Kumar, A.; Kaya, S.; Vo, D.-V. N.; Sharma, A. Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review. Fuel (Lond.) 2022, 312, 122934.
https://doi.org/10.1016/j.fuel.2021.122934

[17]. Sharma, S.; Ganjoo, R.; Kr. Saha, S.; Kang, N.; Thakur, A.; Assad, H.; Kumar, A. Investigation of inhibitive performance of Betahistine dihydrochloride on mild steel in 1 M HCl solution. J. Mol. Liq. 2022, 347, 118383.
https://doi.org/10.1016/j.molliq.2021.118383

[18]. Kumar, A.; Thakur, A. Encapsulated nanoparticles in organic polymers for corrosion inhibition. In Corrosion Protection at the Nanoscale; Elsevier, 2020; pp. 345-362.
https://doi.org/10.1016/B978-0-12-819359-4.00018-0

[19]. Ganjoo, R.; Sharma, S.; Thakur, A.; Kumar, A. Thermodynamic study of corrosion inhibition of Dioctylsulfosuccinate Sodium Salt as corrosion inhibitor against mild steel in 1 M HCl. Mater. Today 2022, 66, 529-533.
https://doi.org/10.1016/j.matpr.2022.05.594

[20]. Ganjoo, R.; Bharmal, A.; Sharma, S.; Thakur, A.; Assad, H.; Kumar, A. Imidazolium based ionic liquids as green corrosion inhibitors against corrosion of mild steel in acidic media. J. Phys. Conf. Ser. 2022, 2267, 012023.
https://doi.org/10.1088/1742-6596/2267/1/012023

[21]. Thakur, A.; Kaya, S.; Abousalem, A. S.; Kumar, A. Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment. Sustain. Chem. Pharm. 2022, 29, 100785.
https://doi.org/10.1016/j.scp.2022.100785

[22]. Thakur, A.; Kumar, A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. Sci. Total Environ. 2022, 834, 155219.
https://doi.org/10.1016/j.scitotenv.2022.155219

[23]. Sharma, S.; Ganjoo, R.; Thakur, A.; Kumar, A. Investigation of corrosion performance of expired Irnocam on the mild steel in acidic medium. Mater. Today 2022, 66, 540-543.
https://doi.org/10.1016/j.matpr.2022.05.595

[24]. Al-Turkustani, A. M. Thermodynamic, chemical and electrochemical investigation of pandanus tectorius extract as corrosion inhibitor for steel in sulfuric acid solutions. Eur. J. Chem. 2013, 4, 303-310.
https://doi.org/10.5155/eurjchem.4.3.303-310.805

[25]. Assad, H.; Thakur, A.; Bharmal, A.; Sharma, S.; Ganjoo, R.; Kaya, S. 2 Corrosion inhibitors: fundamental concepts and selection metrics. In Corrosion Mitigation; De Gruyter, 2022; pp. 19-50.
https://doi.org/10.1515/9783110760583-002

[26]. Burkhanova, T. M.; Krysantieva, A. I.; Babashkina, M. G.; Konyaeva, I. A.; Monina, L. N.; Goncharenko, A. N.; Safin, D. A. In silico analyses of betulin: DFT studies, corrosion inhibition properties, ADMET prediction, and molecular docking with a series of SARS-CoV-2 and monkeypox proteins. Struc. Chem. 2022, 1, 1-12.
https://doi.org/10.1007/s11224-022-02079-8

[27]. Ress, J.; Martin, U.; Breimaier, K.; Bastidas, D. M. Electrochemical and DFT Study of NaNO2/NaNO3 Corrosion Inhibitor Blends for Rebar in Simulated Concrete Pore Solution. Coatings 2022, 12, 861.
https://doi.org/10.3390/coatings12060861

[28]. Zhao, J.; Xu, Y.; Liu, S.; Ding, X. The effect of oxygen-containing species on corrosion behavior of Ta (110) surface: A DFT study with an experimental verification. App. Surf. Sci. 2022, 586, 152810.
https://doi.org/10.1016/j.apsusc.2022.152810

[29]. Assad, H.; Ganjoo, R.; Sharma, S. A theoretical insight to understand the structures and dynamics of thiazole derivatives. J. Phys. Conf. Ser. 2022, 2267, 012063.
https://doi.org/10.1088/1742-6596/2267/1/012063

[30]. Park, S. The effects of the leader-member exchange relationship on rater accountability: A conceptual approach. Cogent Psychol. 2017, 4, 1400416.
https://doi.org/10.1080/23311908.2017.1400416

[31]. Shanaghi, A.; Souri, A. R.; Chu, P. K. EIS and noise study of zirconia-alumina- benzotriazole nano-composite coating applied on Al2024 by the sol-gel method. J. Alloys Compd. 2020, 816, 152662.
https://doi.org/10.1016/j.jallcom.2019.152662

[32]. Quadri, T. W.; Olasunkanmi, L. O.; Akpan, E. D.; Alfantazi, A.; Obot, I. B.; Verma, C.; Al-Mohaimeed, A. M.; Ebenso, E. E.; Quraishi, M. A. Chromeno-carbonitriles as corrosion inhibitors for mild steel in acidic solution: electrochemical, surface and computational studies. RSC Adv. 2021, 11, 2462-2475.
https://doi.org/10.1039/D0RA07595G

[33]. Salmasifar, A.; Edraki, M.; Alibakhshi, E.; Ramezanzadeh, B.; Bahlakeh, G. Combined electrochemical/surface investigations and computer modeling of the aquatic Artichoke extract molecules corrosion inhibition properties on the mild steel surface immersed in the acidic medium. J. Mol. Liq. 2021, 327, 114856.
https://doi.org/10.1016/j.molliq.2020.114856

[34]. Khaled, M. A.; Ismail, M. A.; El-Hossiany, A. A.; Fouda, A. E.-A. S. Novel pyrimidine-bichalcophene derivatives as corrosion inhibitors for copper in 1 M nitric acid solution. RSC Adv. 2021, 11, 25314-25333.
https://doi.org/10.1039/D1RA03603C

[35]. Fouda, A. E.-A. S.; Etaiw, S. E. H.; Hassan, G. S. Chemical, electrochemical and surface studies of new metal-organic frameworks (MOF) as corrosion inhibitors for carbon steel in sulfuric acid environment. Sci. Rep. 2021, 11, 20179.
https://doi.org/10.1038/s41598-021-99700-3

[36]. Ansari, K. R.; Quraishi, M. A.; Singh, A. Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement (Lond.) 2015, 76, 136-147.
https://doi.org/10.1016/j.measurement.2015.08.028

[37]. Saady, A.; Ech-chihbi, E.; El-Hajjaji, F.; Benhiba, F.; Zarrouk, A.; Rodi, Y. K.; Taleb, M.; El Biache, A.; Rais, Z. Molecular dynamics, DFT and electrochemical to study the interfacial adsorption behavior of new imidazo[4,5-b] pyridine derivative as corrosion inhibitor in acid medium. J. Appl. Electrochem. 2021, 51, 245-265.
https://doi.org/10.1007/s10800-020-01498-x

[38]. Saady, A.; Rais, Z.; Benhiba, F.; Salim, R.; Ismaily Alaoui, K.; Arrousse, N.; Elhajjaji, F.; Taleb, M.; Jarmoni, K.; Kandri Rodi, Y.; Warad, I.; Zarrouk, A. Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo[4,5-b] pyridine derivatives against mild steel corrosion. Corros. Sci. 2021, 189, 109621.
https://doi.org/10.1016/j.corsci.2021.109621

[39]. Tang, J.; Hu, Y.; Han, Z.; Wang, H.; Zhu, Y.; Wang, Y.; Nie, Z.; Wang, Y. Experimental and theoretical study on the synergistic inhibition effect of pyridine derivatives and sulfur-containing compounds on the corrosion of carbon steel in CO₂-saturated 3.5 wt.% NaCl solution. Molecules 2018, 23, 3270.
https://doi.org/10.3390/molecules23123270

[40]. Thakur, A.; Kumar, A. Sustainable inhibitors for corrosion mitigation in aggressive corrosive media: A comprehensive study. J. Bio- Tribo-Corros. 2021, 7, 67.
https://doi.org/10.1007/s40735-021-00501-y

[41]. Thakur, A.; Kaya, S.; Abousalem, A. S.; Sharma, S.; Ganjoo, R.; Assad, H.; Kumar, A. Computational and experimental studies on the corrosion inhibition performance of an aerial extract of Cnicus Benedictus weed on the acidic corrosion of mild steel. Process Saf. Environ. Prot. 2022, 161, 801-818.
https://doi.org/10.1016/j.psep.2022.03.082

[42]. Parveen, G.; Bashir, S.; Thakur, A.; Saha, S. K.; Banerjee, P.; Kumar, A. Experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution. Mater. Res. Express 2020, 7, 016510.
https://doi.org/10.1088/2053-1591/ab5c6a

[43]. Thakur, A.; Kaya, S.; Kumar, A. Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys. Appl. Sci. (Basel) 2023, 13, 730.
https://doi.org/10.3390/app13020730

[44]. Bashir, S.; Lgaz, H.; Chung, I.-M.; Kumar, A. Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study. Chem. Eng. Commun. 2021, 208, 1121-1130.
https://doi.org/10.1080/00986445.2020.1752680

[45]. Thakur, A.; Kumar, A. A review on thiazole derivatives as corrosion inhibitors for metals and their alloys. Eur. J. Mol. Clin. Med. 2020, 7, 3702-3712.

[46]. Thakur, A.; Kaya, S.; Kumar, A. Recent innovations in nano container-based self-healing coatings in the construction industry. Curr. Nanosci. 2022, 18, 203-216.
https://doi.org/10.2174/1573413717666210216120741

[47]. Chen, L.; Lu, D.; Zhang, Y. Organic compounds as corrosion inhibitors for carbon steel in HCl solution: A comprehensive review. Materials (Basel) 2022, 15, 2023.
https://doi.org/10.3390/ma15062023

[48]. Kang, Q.; Wang, G.; Liu, Y.; Chen, Y.; Luo, S. Experimental and theoretical study for hot corrosion behavior of network structured TiBw/TA15 composite with NaCl film at 800℃. Corrosion Science 2022, 206, 110540.
https://doi.org/10.1016/j.corsci.2022.110540

[49]. Arafa, W. A. G. A.; El-Sayed, N. H. Synthesis and corrosion inhibition evaluation of novel aminic nitrogen-bearing 1,2,4-triazole Schiff base compounds. Eur. J. Chem. 2014, 5, 563-569.
https://doi.org/10.5155/eurjchem.5.4.563-569.1083

[50]. Bourzi, H.; Oukhrib, R.; El Ibrahimi, B.; Abou Oualid, H.; Abdellaoui, Y.; Balkard, B.; El Issami, S.; Hilali, M.; Bazzi, L.; Len, C. Furfural analogs as sustainable corrosion inhibitors-predictive efficiency using DFT and Monte Carlo simulations on the Cu(111), Fe(110), Al(111) and Sn(111) surfaces in acid media. Sustainability 2020, 12, 3304.
https://doi.org/10.3390/su12083304

[51]. Motawea, M. S.; Abdelaziz, M. A. Some pyrazole derivatives as corrosion inhibitors for carbon steel in hydrochloric acid solutions. Eur. J. Chem. 2015, 6, 342-349.
https://doi.org/10.5155/eurjchem.6.3.342-349.1279

[52]. Benarioua, M.; Mihi, A.; Bouzeghaia, N.; Naoun, M. Mild steel corrosion inhibition by Parsley (Petroselium Sativum) extract in acidic media. Egypt. J. Pet. 2019, 28, 155-159.
https://doi.org/10.1016/j.ejpe.2019.01.001

[53]. Begum, A. A. S.; Vahith, R. M. A.; Kotra, V.; Shaik, M. R.; Abdelgawad, A.; Awwad, E. M.; Khan, M. Spilanthes acmella leaves extract for corrosion inhibition in acid medium. Coatings 2021, 11, 106.
https://doi.org/10.3390/coatings11010106

[54]. Hossam, K.; Bouhlal, F.; Hermouche, L.; Merimi, I.; Labjar, H.; Chaouiki, A.; Labjar, N.; Malika, S.-I.; Dahrouch, A.; Chellouli, M.; Hammouti, B.; El Hajjaji, S. Understanding corrosion inhibition of C38 steel in HCl media by omeprazole: Insights for experimental and computational studies. J. Fail. Anal. Prev. 2021, 21, 213-227.
https://doi.org/10.1007/s11668-020-01042-1

[55]. Berisha, A. Experimental, Monte Carlo and Molecular Dynamic study on corrosion inhibition of mild steel by pyridine derivatives in aqueous perchloric acid. Electrochem 2020, 1, 188-199.
https://doi.org/10.3390/electrochem1020013

[56]. Verma, C.; Rhee, K. Y.; Quraishi, M. A.; Ebenso, E. E. Pyridine based N-heterocyclic compounds as aqueous phase corrosion inhibitors: A review. J. Taiwan Inst. Chem. Eng. 2020, 117, 265-277.
https://doi.org/10.1016/j.jtice.2020.12.011

[57]. Ansari, K. R.; Quraishi, M. A.; Singh, A. Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. J. Ind. Eng. Chem. 2015, 25, 89-98.
https://doi.org/10.1016/j.jiec.2014.10.017

[58]. Lashkari, M.; Arshadi, M. R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects. Chem. Phys. 2004, 299, 131-137.
https://doi.org/10.1016/j.chemphys.2003.12.019

[59]. Saxena, A.; Kumar, J. Phytochemical screening, metal-binding studies and applications of floral extract of Sonchus oleraceus as a corrosion inhibitor. J. Bio- Tribo-Corros. 2020, 6, 55.
https://doi.org/10.1007/s40735-020-00349-8

[60]. Thomas, A.; Prajila, M.; Shainy, K. M.; Joseph, A. A green approach to corrosion inhibition of mild steel in hydrochloric acid using fruit rind extract of Garcinia indica (Binda). J. Mol. Liq. 2020, 312, 113369.
https://doi.org/10.1016/j.molliq.2020.113369

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).