European Journal of Chemistry

Synthesis of lactones from fatty acids by ring-closing metathesis and their biological evaluation

Crossmark


Main Article Content

Vyshnavi Yelchuri
Thirupathi Azmeera
Mallampalli Sri Lakshmi Karuna

Abstract

The present study involves the synthesis of macrocyclic lactones by the esterification of unsaturated fatty acids (oleic acid, undecenoic acid, and erucic acid) with unsaturated alcohols (allyl alcohol, prop-2-ene-1-ol, oleyl alcohol, and undecenol) followed by a ring closing metathesis reaction employing Grubbs' second generation catalyst (1.0-1.5 mmol). The structure of the compounds was confirmed by 1H NMR, 13C NMR, FT-IR, and ESI-Mass spectral studies. The antibacterial activity of the synthesised lactones was evaluated. The larger ring-sized lactone, namely, erucic acid lactone, exhibited excellent antibacterial activity against three bacterial cell lines, namely, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis. Undecenoic acid-based lactones exhibited excellent antibacterial activity selectively against only Staphylococcus epidermidis. The assay of macrolactones for their in vitro anticancer activity was carried out by MTT for different cancer cell lines, namely, human prostate epithelial cancer cells (ATCC HTB-81), HepG2 derived from hepatic cancer cells (ATCC HB-8065), SKOV3 derived from human ovarian cancer cells (ATCC HTB-77), MDAMB-231 derived from human breast cancer cells (ATCC HTB-26) and Chinese hamster ovarian (CHO-K1) cell lines. The molecules selectively exhibited anticancer activity against Chinese hamster ovarian (CHO-K1) cell lines. Among macrolactones, (E)-oxacyclotridec-11-en-2-one (MALUN) was more active and its activity was much higher compared to others and on par with the reference standard Mitomycin C. This was followed by (E)-oxacyclotricos-14-en-2-one (MOLER) and (E)-oxacyclononadec-10-en-2-one (MOLOH). The fatty acid-based cyclic lactones with selective antibacterial and anticancer activities can be further explored for a variety of pharmaceutical formulations.


icon graph This Abstract was viewed 317 times | icon graph Article PDF downloaded 134 times

How to Cite
(1)
Yelchuri, V.; Azmeera, T.; Karuna, M. S. L. Synthesis of Lactones from Fatty Acids by Ring-Closing Metathesis and Their Biological Evaluation. Eur. J. Chem. 2023, 14, 273-279.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Yelchuri, V.; Srikanth, K.; Prasad, R. B. N.; Karuna, M. S. L. Olefin metathesis of fatty acids and vegetable oils. J. Chem. Sci. (Bangalore) 2019, 131, 39.
https://doi.org/10.1007/s12039-019-1615-8

[2]. Handbook of metathesis; Grubbs, R. H.; Wenzel, A. G.; O'Leary, D. J.; Khosravi, E., Eds.; Wiley‐VCH Verlag GmbH & Co. KGaA, 2015.

[3]. Church, D. C.; Takiguchi, L.; Pokorski, J. K. Optimization of ring-opening metathesis polymerization (ROMP) under physiologically relevant conditions. Polym. Chem. 2020, 11, 4492-4499.
https://doi.org/10.1039/D0PY00716A

[4]. Seniha Güner, F.; Yağcı, Y.; Tuncer Erciyes, A. Polymers from triglyceride oils. Prog. Polym. Sci. 2006, 31, 633-670.
https://doi.org/10.1016/j.progpolymsci.2006.07.001

[5]. Habib, F.; Bajpai, M. Synthesis and characterization of acrylated epoxidized soybean oil for UV-cured coatings. Chem. Chem. Technol. 2011, 5, 317-326.
https://doi.org/10.23939/chcht05.03.317

[6]. Ronda, J. C.; Lligadas, G.; Galià, M.; Cádiz, V. Vegetable oils as platform chemicals for polymer synthesis. Eur. J. Lipid Sci. Technol. 2011, 113, 46-58.
https://doi.org/10.1002/ejlt.201000103

[7]. Montero de Espinosa, L.; Meier, M. A. R. Plant oils: The perfect renewable resource for polymer science?! Eur. Polym. J. 2011, 47, 837-852.
https://doi.org/10.1016/j.eurpolymj.2010.11.020

[8]. Turner, W. B.; Aldridge, D. C. Fungal Metabolites: v. 2; Academic Press: San Diego, CA, 1982.

[9]. Nakanishi, K.; Goto, T.; Itô, S. Natural Products Chemistry; Academic Press: San Diego, CA, 2013.

[10]. Taskinen, J.; Nykänen, L. Chemical composition of angelica root oil. Acta Chem. Scand. B 1975, 29, 757-764.
https://doi.org/10.3891/acta.chem.scand.29b-0757

[11]. Carnell, A. J.; Casy, G.; Gorins, G.; Kompany-Saeid, A.; McCague, R.; Olivo, H. F.; Roberts, S. M.; Willetts, A. J. Synthesis of (+)-brefeldin-A. J. Chem. Soc., Perkin Trans. 1 1994, 3431.
https://doi.org/10.1039/p19940003431

[12]. Advances in Heterocyclic Chemistry: Volume 128; Academic Press: San Diego, CA, 2019.

[13]. Saha, S.; Averkiev, B.; Sues, P. E. Ruthenium phosphinimine complex as a fast-initiating olefin metathesis catalyst with competing catalytic cycles. Organometallics 2022, 41, 2879-2890.
https://doi.org/10.1021/acs.organomet.2c00487

[14]. Fogg, D.; Conrad, J. Ruthenium-catalyzed ring-closing metathesis: Recent advances, limitations and opportunities. Curr. Org. Chem. 2006, 10, 185-202.
https://doi.org/10.2174/138527206775192942

[15]. Mahajan, J. R.; Resck, I. S. A new synthesis of medium ring and macrocyclic acetylenic lactones from oxabicycloalkenones via their tosylhydrazones. J. Chem. Soc. Chem. Commun. 1993, 1748.
https://doi.org/10.1039/c39930001748

[16]. Li, Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S. Pd-catalyzed C-H lactonization for expedient synthesis of biaryl lactones and total synthesis of cannabinol. Org. Lett. 2013, 15, 2574-2577.
https://doi.org/10.1021/ol400877q

[17]. Trost, B. M.; Verhoeven, T. R. Cyclizations via organopalladium intermediates. Macrolide formation. J. Am. Chem. Soc. 1977, 99, 3867-3868.
https://doi.org/10.1021/ja00453a070

[18]. Trost, B. M.; Matsubara, S.; Caringi, J. J. Cycloisomerization of .alpha.,.omega.-diynes to macrocycles. J. Am. Chem. Soc. 1989, 111, 8745-8746.
https://doi.org/10.1021/ja00205a041

[19]. Bestmann, H. J.; Schobert, R. A Novel Synthesis of Macrocyclic Lactones. Angew. Chem. Int. Ed. Engl. 1983, 22, 780-782.
https://doi.org/10.1002/anie.198307801

[20]. Keck, G. E.; McHardy, S. F.; Murry, J. A. Total synthesis of (+)-7-deoxypancratistatin: A radical cyclization approach. J. Am. Chem. Soc. 1995, 117, 7289-7290.
https://doi.org/10.1021/ja00132a047

[21]. Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules 2020, 25, 505.
https://doi.org/10.3390/molecules25030505

[22]. McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem. Rev. 2004, 104, 2239-2258.
https://doi.org/10.1021/cr020109k

[23]. Metz, P.; Karsch, S.; Freitag, D.; Schwab, P. Ring closing metathesis in the synthesis of sultones and sultams. Synthesis (Mass.) 2004, 2004, 1696-1712.
https://doi.org/10.1055/s-2004-822408

[24]. Deiters, A.; Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 2004, 104, 2199-2238.
https://doi.org/10.1021/cr0200872

[25]. Swart, M. R.; Marais, C.; Erasmus, E. Comparison of the spectroscopically measured catalyst transformation and electrochemical properties of Grubbs' first- and second-generation catalysts. ACS Omega 2021, 6, 28642-28653.
https://doi.org/10.1021/acsomega.1c03109

[26]. Litinas, K. E.; Salteris, B. E. Unsaturated macrocyclic lactone synthesis via catalytic ring-closing metathesis 1. J Chem Soc Perkin Trans 1 1997, 2869-2872.
https://doi.org/10.1039/a702353g

[27]. Fürstner, A.; Langemann, K. Conformationally unbiased macrocyclization reactions by ring closing metathesis. J. Org. Chem. 1996, 61, 3942-3943.
https://doi.org/10.1021/jo960733v

[28]. Kraft, P.; Cadalbert, R. Constructing conformationally constrained macrobicyclic musks. Chemistry 2001, 7, 3254-3262.
https://doi.org/10.1002/1521-3765(20010803)7:15<3254::AID-CHEM3254>3.0.CO;2-#

[29]. Lehmann, J.; Tochtermann, W. Synthesis and olfactory properties of regioisomeric alkynolides and (Z)-alkenolides. Tetrahedron 1999, 55, 2639-2658.
https://doi.org/10.1016/S0040-4020(99)00041-1

[30]. Weinstein, M. P. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. CLSI standard M07. W; National Committee for Clinical Laboratory Standards: Wayne, PA, 2018.

[31]. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55-63.
https://doi.org/10.1016/0022-1759(83)90303-4

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).