European Journal of Chemistry 2023, 14(3), 330-336 | doi: https://doi.org/10.5155/eurjchem.14.3.330-336.2432 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Coumarin-hydrazone-based fluorescence sensor for Al(III) detection in aqueous solution: DFT calculation and DNA interaction studies


Sunshine Dominic Kurbah (1,*) orcid , Ndege Simisi Clovis (2) orcid

(1) Department of Chemistry, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Eraligool-788723, Karimganj, Assam, India
(2) Department of Chemistry, Faculty of Science and Technology, University of Kinshasa, Kinshasa, Democratic Republic of Congo
(*) Corresponding Author

Received: 08 Mar 2023 | Revised: 06 May 2023 | Accepted: 04 Jun 2023 | Published: 30 Sep 2023 | Issue Date: September 2023

Abstract


A new 'turn on' fluorescence chemosensor derived from coumarin-based compounds was successfully synthesised. N'-(2-Oxo-2H-chromene-3-carbonyl)isonicotinohydrazide (H2L) was characterised by different spectroscopic techniques such as IR, UV-vis, and NMR spectroscopy. The electronic structures of H2L and Al@HL were calculated using the density functional theory method using Becke’s three parameter Lee-Yang-Parr (B3LYP) exchange functional with the 6-31G+(d,p) basis set. The detection limit of H2L for the Al (III) ion was found to be 2.6 µM, which is low enough to detect micromolar and is below the World Health Organisation guideline for drinking water.


Announcements


Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.

1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).

2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).

3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).


Editor-in-Chief
European Journal of Chemistry

Keywords


DFT; Coumarin; Selectivity; Sensitivity; Aluminum ion; Fluorescence sensor

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.14.3.330-336.2432

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 170 times | icon graph PDF Article downloaded 47 times

Funding information


North-Eastern Hill University, Shillong-793022, India.

References


[1]. Smith, B. A.; Akers, W. J.; Leevy, W. M.; Lampkins, A. J.; Xiao, S.; Wolter, W.; Suckow, M. A.; Achilefu, S.; Smith, B. D. Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces. J. Am. Chem. Soc. 2010, 132, 67-69.
https://doi.org/10.1021/ja908467y

[2]. Nolan, E. M.; Racine, M. E.; Lippard, S. J. Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins. Inorg. Chem. 2006, 45, 2742-2749.
https://doi.org/10.1021/ic052083w

[3]. Kamaci, Ü. D.; Kamaci, M. Boric acid and Schiff base-based fluorescent sensor for detection of L-tryptophan in milk and BSA samples. Turk. J. Chem. 2022, 46, 929-940.
https://doi.org/10.55730/1300-0527.3381

[4]. Aydiner, B. Coumarin-based benzilmonohydrazone as a new proton-sensitive fluorescencedye: synthesis and investigation of photophysical and acidochromic properties. Turk. J. Chem. 2019, 43, 1086-1097.
https://doi.org/10.3906/kim-1902-38

[5]. Karakuş, E. An anthracene based fluorescent probe for the selective and sensitive detection of Chromium (III) ions in an aqueous medium and its practical application. Turk. J. Chem. 2020, 44, 941-949.
https://doi.org/10.3906/kim-2003-41

[6]. Hentze, M. W.; Muckenthaler, M. U.; Andrews, N. C. Balancing acts. Cell 2004, 117, 285-297.
https://doi.org/10.1016/S0092-8674(04)00343-5

[7]. Ma, Y.-R.; Niu, H.-Y.; Zhang, X.-L.; Cai, Y.-Q. Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles. Chem. Commun. (Camb.) 2011, 47, 12643-12645.
https://doi.org/10.1039/c1cc15048k

[8]. Ha, W.; Yu, J.; Wang, R.; Chen, J.; Shi, Y.-P. "Green" colorimetric assay for the selective detection of trivalent chromium based on Xanthoceras sorbifolia tannin attached to gold nanoparticles. Anal. Methods 2014, 6, 5720-5726.
https://doi.org/10.1039/C4AY00976B

[9]. Dixon, S. J.; Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9-17.
https://doi.org/10.1038/nchembio.1416

[10]. Carter, K. P.; Young, A. M.; Palmer, A. E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 2014, 114, 4564-4601.
https://doi.org/10.1021/cr400546e

[11]. Ucuncu, M. A BODIPY based probe for the reversible "turn on" detection of Au(III) ions. Turk. J. Chem. 2022, 46, 523-529.
https://doi.org/10.55730/1300-0527.3325

[12]. Sahana, A.; Banerjee, A.; Lohar, S.; Banik, A.; Mukhopadhyay, S. K.; Safin, D. A.; Babashkina, M. G.; Bolte, M.; Garcia, Y.; Das, D. FRET based tri-color emissive rhodamine-pyrene conjugate as an Al3+ selective colorimetric and fluorescence sensor for living cell imaging. Dalton Trans. 2013, 42, 13311-13314.
https://doi.org/10.1039/c3dt51752g

[13]. Goswami, S.; Paul, S.; Manna, A. Selective "naked eye" detection of Al(iii) and PPi in aqueous media on a rhodamine-isatin hybrid moiety. RSC Adv. 2013, 3, 10639.
https://doi.org/10.1039/c3ra40984h

[14]. Maimaiti, Y.; Maimaitiyiming, X. A highly selective and sensitive fluorescent turn-off probe for Al3+ based on polypyrimidine. Fiber. Polym. 2020, 21, 7-18.
https://doi.org/10.1007/s12221-020-9319-8

[15]. Keawwangchai, T.; Morakot, N.; Wanno, B. Fluorescent sensors based on BODIPY derivatives for aluminium ion recognition: an experimental and theoretical study. J. Mol. Model. 2013, 19, 1435-1444.
https://doi.org/10.1007/s00894-012-1698-3

[16]. Badugu, R. Fluorescence sensor design for transition metal ions: the role of the PIET interaction efficiency. J. Fluoresc. 2005, 15, 71-83.
https://doi.org/10.1007/s10895-005-0215-9

[17]. Wang, B.; Xing, W.; Zhao, Y.; Deng, X. Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. Environ. Toxicol. Pharmacol. 2010, 29, 308-313.
https://doi.org/10.1016/j.etap.2010.03.007

[18]. Mergu, N.; Singh, A. K.; Gupta, V. K. Highly sensitive and selective colorimetric and off-on fluorescent reversible chemosensors for Al3+ based on the rhodamine fluorophore. Sensors (Basel) 2015, 15, 9097-9111.
https://doi.org/10.3390/s150409097

[19]. Thangaraj, S. E.; Antony, E. J.; Selvan, G. T.; Selvakumar, P. M.; Enoch, I. V. M. V. A New Fluorenone-based Turn-on Fluorescent Al3+ Ion Sensor. J Anal Chem 2019, 74, 87-92.
https://doi.org/10.1134/S1061934819010118

[20]. Flaten, T. P. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res. Bull. 2001, 55, 187-196.
https://doi.org/10.1016/S0361-9230(01)00459-2

[21]. Barceló, J.; Poschenrieder, C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ. Exp. Bot. 2002, 48, 75-92.
https://doi.org/10.1016/S0098-8472(02)00013-8

[22]. Han, T.; Feng, X.; Tong, B.; Shi, J.; Chen, L.; Zhi, J.; Dong, Y. A novel "turn-on" fluorescent chemosensor for the selective detection of Al3+ based on aggregation-induced emission. Chem. Commun. (Camb.) 2012, 48, 416-418.
https://doi.org/10.1039/C1CC15681K

[23]. Jang, H. J.; Kang, J. H.; Yun, D.; Kim, C. A multifunctional selective "turn-on" fluorescent chemosensor for detection of Group IIIA ions Al3+, Ga3+ and In3+. Photochem. Photobiol. Sci. 2018, 17, 1247-1255.
https://doi.org/10.1039/c8pp00171e

[24]. Hirata, S.; Umezaki, Y.; Ikeda, M. Determination of chromium(III), titanium, vanadium, iron(III), and aluminum by inductively coupled plasma atomic emission spectrometry with an on-line preconcentrating ion-exchange column. Anal. Chem. 1986, 58, 2602-2606.
https://doi.org/10.1021/ac00126a005

[25]. Joshi, P.; Painuli, R.; Kumar, D. Label-free colorimetric nanosensor for the selective on-site detection of aqueous Al3+. ACS Sustain. Chem. Eng. 2017, 5, 4552-4562.
https://doi.org/10.1021/acssuschemeng.6b02861

[26]. Yu, F.; Hou, L. J.; Qin, L. Y.; Chao, J. B.; Wang, Y.; Jin, W. J. A new colorimetric and turn-on fluorescent chemosensor for Al 3+ in aqueous medium and its application in live-cell imaging. J. Photochem. Photobiol. A Chem. 2016, 315, 8-13.
https://doi.org/10.1016/j.jphotochem.2015.09.006

[27]. Gui, S.; Huang, Y.; Hu, F.; Jin, Y.; Zhang, G.; Yan, L.; Zhang, D.; Zhao, R. Fluorescence turn-on chemosensor for highly selective and sensitive detection and bioimaging of Al(3+) in living cells based on ion-induced aggregation. Anal. Chem. 2015, 87, 1470-1474.
https://doi.org/10.1021/ac504153c

[28]. Komor, A. C.; Barton, J. K. The path for metal complexes to a DNA target. Chem. Commun. (Camb.) 2013, 49, 3617-3630.
https://doi.org/10.1039/c3cc00177f

[29]. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
https://doi.org/10.1063/1.464913

[30]. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys. 1988, 38, 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098

[31]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[32]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. , Wallingford CT, 2004.

[33]. Sheet, S. K.; Sen, B.; Thounaojam, R.; Aguan, K.; Khatua, S. Highly selective light-up Al3+ sensing by a coumarin based Schiff base probe: Subsequent phosphate sensing DNA binding and live cell imaging. J. Photochem. Photobiol. A Chem. 2017, 332, 101-111.
https://doi.org/10.1016/j.jphotochem.2016.08.019

[34]. Chethan Prathap, K. N.; Lokanath, N. K. Three novel coumarin-benzenesulfonylhydrazide hybrids: Synthesis, characterization, crystal structure, Hirshfeld surface, DFT and NBO studies. J. Mol. Struct. 2018, 1171, 564-577.
https://doi.org/10.1016/j.molstruc.2018.06.022


How to cite


Kurbah, S.; Clovis, N. Eur. J. Chem. 2023, 14(3), 330-336. doi:10.5155/eurjchem.14.3.330-336.2432
Kurbah, S.; Clovis, N. Coumarin-hydrazone-based fluorescence sensor for Al(III) detection in aqueous solution: DFT calculation and DNA interaction studies. Eur. J. Chem. 2023, 14(3), 330-336. doi:10.5155/eurjchem.14.3.330-336.2432
Kurbah, S., & Clovis, N. (2023). Coumarin-hydrazone-based fluorescence sensor for Al(III) detection in aqueous solution: DFT calculation and DNA interaction studies. European Journal of Chemistry, 14(3), 330-336. doi:10.5155/eurjchem.14.3.330-336.2432
Kurbah, Sunshine, & Ndege Simisi Clovis. "Coumarin-hydrazone-based fluorescence sensor for Al(III) detection in aqueous solution: DFT calculation and DNA interaction studies." European Journal of Chemistry [Online], 14.3 (2023): 330-336. Web. 10 Dec. 2023
Kurbah, Sunshine, AND Clovis, Ndege. "Coumarin-hydrazone-based fluorescence sensor for Al(III) detection in aqueous solution: DFT calculation and DNA interaction studies" European Journal of Chemistry [Online], Volume 14 Number 3 (30 September 2023)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.14.3.330-336.2432


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2023, 14(3), 330-336 | doi: https://doi.org/10.5155/eurjchem.14.3.330-336.2432 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.