European Journal of Chemistry

Synthesis and antimicrobial activity of new ent-kaurene-type diterpenoid derivatives

Crossmark


Main Article Content

Andres Eduardo Marquez-Chacon
Alida Perez Colmenares
Luis Rojas Fermin
Rosa Aparicio
Freddy Alejandro Ramos
Alfredo Usubillaga
Ysbelia Obregon

Abstract

This research consists in the synthesis of ent-kaurene-type diterpenoid derivatives from the new natural product ent-kaur-3-acetoxy-15-ene, to carry out structural modifications on the C3 carbon of the ent-kaurene core by introducing different oxygenated groups, especially esters, in order to probe the structure-activity relationship (SAR) against microorganisms. The structure of the compounds was confirmed by FT-IR, 1H NMR, 13C NMR, and GC-MS. The antimicrobial activity of the synthesized derivatives was evaluated, ent-kaur-3-O-(6’,7’-bibenzyl-oxy-caffeoyl)-15-ene (4) exhibited activity against all tested microorganisms: Staphylococcus aureus (16 mm), Enterococcus faecalis (12 mm), Escherichia coli (13 mm), Klebsiella pneumoniae (10 mm), Pseudomonas aeruginosa (8 mm) and Candida krusei (10 mm). These results reveal a remarkable structure-activity relationship over the C3 carbon of the ent-kaurene core, where the presence of oxygenated groups such as hydroxyl or alkyl esters enhances activity.


icon graph This Abstract was viewed 268 times | icon graph Article PDF downloaded 120 times

How to Cite
(1)
Marquez-Chacon, A. E.; Colmenares, A. P.; Fermin, L. R.; Aparicio, R.; Ramos, F. A.; Usubillaga, A.; Obregon, Y. Synthesis and Antimicrobial Activity of New Ent-Kaurene-Type Diterpenoid Derivatives. Eur. J. Chem. 2023, 14, 478-485.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Atanasov, A. G.; the International Natural Product Sciences Taskforce; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200-216.
https://doi.org/10.1038/s41573-020-00114-z

[2]. Abdel-Razek, A. S.; El-Naggar, M. E.; Allam, A.; Morsy, O. M.; Othman, S. I. Microbial natural products in drug discovery. Processes (Basel) 2020, 8, 470.
https://doi.org/10.3390/pr8040470

[3]. Porto, T. S.; Simão, M. R.; Carlos, L. Z.; Martins, C. H. G.; Furtado, N. A. J. C.; Said, S.; Arakawa, N. S.; dos Santos, R. A.; Veneziani, R. C. S.; Ambrósio, S. R. Pimarane‐type diterpenes obtained by bio-transformation: Antimicrobial properties against clinically isolated gram‐positive multidrug‐resistant bacteria. Phytother. Res. 2013, 27, 1502-1507.
https://doi.org/10.1002/ptr.4887

[4]. Miron-Lopez, G.; Bazzocchi, I. L.; Jimenez-Diaz, I. A.; Moujir, L. M.; Quijano-Quiñones, R.; Quijano, L.; Mena-Rejon, G. J. Cytotoxic diterpenes from roots of Crossopetalum gaumeri, a Celastraceae species from Yucatan Peninsula. Bioorg. Med. Chem. Lett. 2014, 24, 2105-2109.
https://doi.org/10.1016/j.bmcl.2014.03.051

[5]. Bou, D. D.; Tempone, A. G.; Pinto, É. G.; Lago, J. H. G.; Sartorelli, P. Antiparasitic activity and effect of casearins isolated from Casearia sylvestris on Leishmania and Trypanosoma cruzi plasma membrane. Phytomedicine 2014, 21, 676-681.
https://doi.org/10.1016/j.phymed.2014.01.004

[6]. Pardo-Vargas, A.; Ramos, F. A.; Cirne-Santos, C. C.; Stephens, P. R.; Paixão, I. C. P.; Teixeira, V. L.; Castellanos, L. Semi-synthesis of oxygenated dolabellane diterpenes with highly in vitro anti-HIV-1 activity. Bioorg. Med. Chem. Lett. 2014, 24, 4381-4383.
https://doi.org/10.1016/j.bmcl.2014.08.019

[7]. Jiang, K.; Chen, L.-L.; Wang, S.-F.; Wang, Y.; Li, Y.; Gao, K. Anti-inflammatory Terpenoids from the Leaves and Twigs of Dysoxylum gotadhora. J. Nat. Prod. 2015, 78, 1037-1044.
https://doi.org/10.1021/np5010196

[8]. de S. Vargas, F.; D. O. de Almeida, P.; Aranha, E.; de A. Boleti, A.; Newton, P.; de Vasconcellos, M.; Junior, V.; Lima, E. Biological Activities and Cytotoxicity of Diterpenes from Copaifera spp. Oleoresins. Molecules 2015, 20, 6194-6210.
https://doi.org/10.3390/molecules20046194

[9]. Miranda, M. M.; Panis, C.; da Silva, S. S.; Macri, J. A.; Kawakami, N. Y.; Hayashida, T. H.; Madeira, T. B.; Acquaro, V. R.; Nixdorf, S. L.; Pizzatti, L.; Ambrósio, S. R.; Cecchini, R.; Arakawa, N. S.; Verri, W. A.; Conchon Costa, I.; Pavanelli, W. R. Kaurenoic acid possesses leishmanicidal activity by triggering a NLRP12/IL-1β/cNOS/NO pathway. Mediators Inflamm. 2015, 2015, 1-10.
https://doi.org/10.1155/2015/392918

[10]. Zhu, L.; Huang, S.-H.; Yu, J.; Hong, R. Constructive innovation of approaching bicyclo[3.2.1]octane in ent-kauranoids. Tetrahedron Lett. 2015, 56, 23-31.
https://doi.org/10.1016/j.tetlet.2014.11.035

[11]. Usubillaga, A.; Romero, M.; Aparicio, R. Kaurenic acid in Espeletiinae. Acta Hortic. 2003, 129-130.
https://doi.org/10.17660/ActaHortic.2003.597.17

[12]. Aparicio Z., R. L.; Villasmil, T.; Peña, A.; Rojas S., J. C.; Usubillaga, A. Estudio fitoquímico de las hojas de Espeletia semiglobulata Cuatrec. Revista de la Facultad de Farmacia 2014, 55(2), 2-5, http://www.saber.ula.ve/handle/123456789/38474 (accessed Oct 10, 2023).

[13]. de Andrade, B. B.; Moreira, M. R.; Ambrosio, S. R.; Furtado, N. A. J. C.; Cunha, W. R.; Heleno, V. C. G.; Silva, A. N.; Simão, M. R.; da Rocha, E. M. P.; Martins, C. H. G.; Veneziani, R. C. S. Evaluation of ent-kaurenoic acid derivatives for their anticariogenic activity. Nat. Prod. Commun. 2011, 6(6), 1934578X1100600.
https://doi.org/10.1177/1934578X1100600608

[14]. Batista, R.; García, P. A.; Castro, M. A.; Miguel del Corral, J. M.; Speziali, N. L.; de P. Varotti, F.; de Paula, R. C.; García-Fernández, L. F.; Francesch, A.; San Feliciano, A.; de Oliveira, A. B. Synthesis, cytotoxicity and antiplasmodial activity of novel ent -kaurane derivatives. Eur. J. Med. Chem. 2013, 62, 168-176.
https://doi.org/10.1016/j.ejmech.2012.12.010

[15]. Matos, P.; Mahoney, B.; Chan, Y.; Day, D.; Cabral, M.; Martins, C.; Santos, R.; Bastos, J.; Page, P.; Heleno, V. New non-toxic semi-synthetic derivatives from natural diterpenes displaying anti-tuberculosis activity. Molecules 2015, 20, 18264-18278.
https://doi.org/10.3390/molecules201018264

[16]. Silva, A.; Soares, A. C.; Cabral, M.; de Andrade, A.; da Silva, M.; Martins, C.; Veneziani, R.; Ambrósio, S.; Bastos, J.; Heleno, V. Antitubercular Activity Increase in Labdane Diterpenes from Copaifera Oleoresin through Structural Modification. J. Braz. Chem. Soc. 2016, 28(6), 1106-1112, http://dx.doi.org/10.21577/0103-5053.20160268 (accessed Oct 10, 2023).
https://doi.org/10.21577/0103-5053.20160268

[17]. Cordero de Rojas, Y.; Lucena de Ustáriz, M. E.; Araujo, L.; Usubillaga, A.; Rojas, L. B.; Moujir, L. Actividad antibacteriana de diterpenos del kaurano aislados de Coespeletia moritziana (Sch. Bip. ex Wedd.) Cuatrec. Revista de la Facultad de Farmacia 2017, 59(2), 03-07, http://www.saber.ula.ve/handle/123456789/45132 (accessed Oct 10, 2023).

[18]. Rios Tesch, N. N.; Villalobos Osorio, D. C.; Rojas, L. B.; Aparicio Z., R. L.; Usubillaga, A.; Mitaine Offer, A. C.; Lacaille Dubois, M. A.; Denis, D.; Peixoto, P.; Laurent, P.; Stéphane, Q. In vivo anti-inflammatory activity of grandiflorenic acid and kaurenic acid isolated from Coespeletia moritziana and Espeletia semiglobulata. Revista de la Facultad de Farmacia 2017, 59 (1), 17-21, http://www.saber.ula.ve/handle/ 123456789/44160 (accessed Oct 10, 2023).

[19]. Villasmil, T.; Rojas, J.; Aparicio, R.; Gamboa, N.; Acosta, M. E.; Rodrigues, J.; Usubillaga, A. Antimalarial activity of some kaurenes. Nat. Prod. Commun. 2017, 12, 1934578X1701200.
https://doi.org/10.1177/1934578X1701200219

[20]. Peña, A.; Usubillaga, A.; Alarcón Pineda, L. del V.; Velasco Carrillo, J.; Aparicio Z., R. L. Obtención de derivados azufrados del ácido kaurénico y de otros kaurenos substituidos en la posición C-15 y su actividad antibacteriana. Revista de la Facultad de Farmacia 2016, 57 (1), 3-8, http://www.saber.ula.ve/handle/123456789/41936 (accessed Oct 10, 2023).

[21]. Ruiz, Y.; Rodrígues, J.; Arvelo, F.; Usubillaga, A.; Monsalve, M.; Diez, N.; Galindo-Castro, I. Cytotoxic and apoptosis-inducing effect of ent-15-oxo-kaur-16-en-19-oic acid, a derivative of grandiflorolic acid from Espeletia schultzii. Phytochemistry 2008, 69, 432-438.
https://doi.org/10.1016/j.phytochem.2007.07.025

[22]. Mora, A. J.; Delgado, G. E.; Vaughan, G. B. M.; Martin, P.; Visbal, T.; Usubillaga, A. A peracetylated glucosyl ester of kaurenic acid. Acta Crystallogr. Sect. E Struct. Rep. Online 2004, 60, o334-o336.
https://doi.org/10.1107/S1600536804002181

[23]. Márquez, A. E.; Pérez, A.; Rojas, L.; Aparicio, R.; Ramos, F.; Obregón, Y.; Usubillaga, A. A New ent-kaurene Diterpenoid Isolated from Leaves of Espeletia semiglobulata Cuatrec. and its Potential Antimicrobial Activity. Biol. Med. Nat. Prod. Chem. 2023, 12, 151-157.
https://doi.org/10.14421/biomedich.2023.121.151-157

[24]. CLSI: Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement; Clinical & Laboratory Standards Institute, 2013.

[25]. Wikler, M. A. Performance standards for antimicrobial disk susceptibility tests; Approved standard; 11th ed.; Clinical & Laboratory Standards Institute, 2012.

[26]. Berkow, E. L.; Lockhart, S. R.; Ostrosky-Zeichner, L. Antifungal susceptibility testing: Current approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19.
https://doi.org/10.1128/CMR.00069-19

[27]. Abualhasan, M. N.; Al- Masri, M. Y.; Manasara, R.; Yadak, L.; Abu-Hasan, N. S. Anti-inflammatory and anticoagulant activities of synthesized NSAID prodrug esters. Scientifica (Cairo) 2020, 2020, 1-6.
https://doi.org/10.1155/2020/9817502

[28]. Ohkoshi, E.; Kamo, S.; Makino, M.; Fujimoto, Y. ent-Kaurenoic acids from Mikania hirsutissima (Compositae). Phytochemistry 2004, 65, 885-890.
https://doi.org/10.1016/j.phytochem.2004.02.020

[29]. Rodrı́guez, S.; Garda, H. A.; Heinzen, H.; Moyna, P. Effect of plant monofunctional pentacyclic triterpenes on the dynamic and structural properties of dipalmitoylphosphatidylcholine bilayers. Chem. Phys. Lipids 1997, 89, 119-130.
https://doi.org/10.1016/S0009-3084(97)00068-6

[30]. Herrera, M.; Rodriguez-Rodriguez, R.; Ruiz-Gutierrez, V. Functional properties of pentacyclic triterpenes contained in "orujo" Olive oil. Curr. Nutr. Food Sci. 2006, 2, 45-49.
https://doi.org/10.2174/157340106775471976

[31]. Anthonsen, T.; Chantharasakul, S.; Raknes, E.; Sørensen, N. A.; Lindberg, A. A.; Ehrenberg, L. Isolation of ent-16-kauren-19-oic acid and ent-16-kauren-19-ol from Abrotanella nivigena Muell. Acta Chem. Scand. 1971, 25, 1925-1927.
https://doi.org/10.3891/acta.chem.scand.25-1925

[32]. Hutchison, M.; Lewer, P.; MacMillan, J. Carbon-13 nuclear magnetic resonance spectra of eighteen derivatives of ent-kaur-16-en-19-oic acid. J. Chem. Soc., Perkin Trans. 1 1984, 2363-2366.
https://doi.org/10.1039/p19840002363

[33]. Neises, B.; Steglich, W. Simple method for the esterification of carboxylic acids. Angew. Chem., Int. Ed. Engl. 1978, 17, 522-524.
https://doi.org/10.1002/anie.197805221

[34]. Batista, R.; García, P. A.; Castro, M. A.; Corral, J. M. M. del; Sanz, F.; Speziali, N. L.; Oliveira, A. B. de Methylent-16β,17-epoxykauran-19-oate. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, o932-o933.
https://doi.org/10.1107/S1600536807002693

[35]. Urzúa, A.; Rezende, M.; Mascayano, C.; Vásquez, L. A structure-activity study of antibacterial diterpenoids. Molecules 2008, 13, 882-891.
https://doi.org/10.3390/molecules13040822

[36]. Echeverría, J.; Urzúa, A.; Sanhueza, L.; Wilkens, M. Enhanced antibacterial activity of ent-labdane derivatives of salvic acid (7α-hydroxy-8(17)-ent-labden-15-oic acid): Effect of lipophilicity and the hydrogen bonding role in bacterial membrane interaction. Molecules 2017, 22, 1039.
https://doi.org/10.3390/molecules22071039

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).