European Journal of Chemistry

Aqueous hydrotropes: An efficient and reusable catalyst for the synthesis of 3-carboxy-coumarin motifs at room temperature

Crossmark


Main Article Content

Pavan Devidas Baviskar
Arun Dinkar Kale
Vilas Nana Mahire
Swati Dnyaneshwarpuri Gosavi
Dipak Sharadrao Dalal
Pramod Pandurang Mahulikar

Abstract

The coumarin moiety plays an important role in the large number of natural products possessing different kinds of biological diversity. Coumarin carboxylic acids show a wide range of biological activities in the pharmaceutical and agricultural fields. Knoevenagel condensation is one of the important reaction pathways for synthesizing coumarin derivatives, and many methodologies have been developed to synthesize this class of compounds. A more environmentally friendly method of synthesizing 3-carboxy coumarins has been successfully carried out using 50% aqueous NaPTS hydrotropes at room temperature, along with various substituted 2-hydroxy benzaldehydes and Meldrum’s acid. This process involves Knoevenagel condensation followed by intramolecular cyclization, providing better product yields (78-95%).


icon graph This Abstract was viewed 102 times | icon graph Article PDF downloaded 28 times

How to Cite
(1)
Baviskar, P. D.; Kale , A. D.; Mahire , V. N.; Gosavi, S. D.; Dalal, D. S.; Mahulikar, P. P. Aqueous Hydrotropes: An Efficient and Reusable Catalyst for the Synthesis of 3-Carboxy-Coumarin Motifs at Room Temperature. Eur. J. Chem. 2024, 15, 239-244.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Anastas, P. T.; Warner, J. Green chemistry: Theory and practice; Oxford University Press: New York, NY, 2000.
https://doi.org/10.1093/oso/9780198506980.001.0001

[2]. Katsori, A.-M.; Hadjipavlou-Litina, D. Coumarin derivatives: an updated patent review (2012 - 2014). Expert Opin. Ther. Pat. 2014, 24, 1323-1347.
https://doi.org/10.1517/13543776.2014.972368

[3]. Brahmachari, G. Handbook of pharmaceutical natural products; Wiley-VCH Verlag: Weinheim, Germany, 2010.

[4]. Qiang, D. Z.; Shi, J. B.; Song, B. A.; Liu, X. H. Novel 2H-chromen derivatives: design, synthesis and anticancer activity. RSC Adv. 2014, 4, 5607-5617.
https://doi.org/10.1039/c3ra47252c

[5]. Zwergel, C.; Valente, S.; Salvato, A.; Xu, Z.; Talhi, O.; Mai, A.; Silva, A.; Altucci, L.; Kirsch, G. Novel benzofuran-chromone and -coumarin derivatives: synthesis and biological activity in K562 human leukemia cells. Medchemcomm 2013, 4, 1571-1579.
https://doi.org/10.1039/c3md00241a

[6]. Wu, X.-Q.; Huang, C.; Jia, Y.-M.; Song, B.-A.; Li, J.; Liu, X.-H. Novel coumarin-dihydropyrazole thio-ethanone derivatives: Design, synthesis and anticancer activity. Eur. J. Med. Chem. 2014, 74, 717-725.
https://doi.org/10.1016/j.ejmech.2013.06.014

[7]. Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem. 2006, 13, 1085-1107.
https://doi.org/10.2174/092986706776360941

[8]. van Schie, R. M. F.; Wadelius, M.; Kamali, F.; Daly, A. K.; Manolopoulos, V. G.; de Boer, A.; Barallon, R.; Verhoef, T. I.; Kirchheiner, J.; Haschke-Becher, E.; Briz, M.; Rosendaal, F. R.; Redekop, W. K.; Pirmohamed, M.; Maitland-van der Zee, A.-H. Genotype-guided dosing of coumarin derivatives: The European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 2009, 10, 1687-1695.
https://doi.org/10.2217/pgs.09.125

[9]. Singer, L. A.; Kong, N. P. Vinyl radicals. Stereoselectivity in hydrogen atom transfer to equilibrated isomeric vinyl radicals1. J. Am. Chem. Soc. 1966, 88, 5213-5219.
https://doi.org/10.1021/ja00974a033

[10]. Mohamed, H. M.; El-Wahab, A. H. F. A.; Ahmed, K. A.; El-Agrody, A. M.; Bedair, A. H.; Eid, F. A.; Khafagy, M. M. Synthesis, reactions and antimicrobial activities of 8-ethoxycoumarin derivatives. Molecules 2012, 17, 971-988.
https://doi.org/10.3390/molecules17010971

[11]. Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Carradori, S.; Granese, A.; Rivanera, D.; Lilli, D.; Scaltrito, M. M.; Brenciaglia, M. I. Synthesis and in vitro selective anti-Helicobacter pylori activity of N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Eur. J. Med. Chem. 2006, 41, 208-212.
https://doi.org/10.1016/j.ejmech.2005.11.001

[12]. Bhavsar, D.; Trivedi, J.; Parekh, S.; Savant, M.; Thakrar, S.; Bavishi, A.; Radadiya, A.; Vala, H.; Lunagariya, J.; Parmar, M.; Paresh, L.; Loddo, R.; Shah, A. Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide derivatives using MTT method. Bioorg. Med. Chem. Lett. 2011, 21, 3443-3446.
https://doi.org/10.1016/j.bmcl.2011.03.105

[13]. Bedoya, L. M.; Beltrán, M.; Sancho, R.; Olmedo, D. A.; Sánchez-Palomino, S.; del Olmo, E.; López-Pérez, J. L.; Muñoz, E.; Feliciano, A. S.; Alcamí, J. 4-Phenylcoumarins as HIV transcription inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 4447-4450.
https://doi.org/10.1016/j.bmcl.2005.07.041

[14]. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K.-H. Recent progress in the development of coumarin derivatives as potent anti‐HIV agents. Med. Res. Rev. 2003, 23, 322-345.
https://doi.org/10.1002/med.10034

[15]. Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. Coumarin-based inhibitors of HIV integrase. J. Med. Chem. 1997, 40, 242-249.
https://doi.org/10.1021/jm960450v

[16]. Martínez-Martínez, F.; Razo-Hernández, R.; Peraza-Campos, A.; Villanueva-García, M.; Sumaya-Martínez, M.; Cano, D.; Gómez-Sandoval, Z. Synthesis and in vitro antioxidant activity evaluation of 3-carboxycoumarin derivatives and QSAR study of their DPPH• radical scavenging activity. Molecules 2012, 17, 14882-14898.
https://doi.org/10.3390/molecules171214882

[17]. Kontogiorgis, C.; Hadjipavlou-Litina, D. Biological evaluation of several coumarin derivatives designed as possible anti-inflammatory/ antioxidant agents. J. Enzyme Inhib. Med. Chem. 2003, 18, 63-69.
https://doi.org/10.1080/1475636031000069291

[18]. Bonsignore, L.; De Logu, A.; Loy, G.; Lavagna, S. M.; Secci, D. Synthesis and antimicrobial activity of coumarin and benzodioxazepine-, diazazepine- and benzoxazepine-substituted penicillins. Eur. J. Med. Chem. 1994, 29, 479-485.
https://doi.org/10.1016/0223-5234(94)90075-2

[19]. Bonsignore, L.; Cottiglia, F.; Maccioni, A. M.; Secci, D.; Lavagna, S. M. Synthesis of coumarin‐3‐O‐acylisoureas by dicyclohexylcarbodiimide. J. Heterocycl. Chem. 1995, 32, 573-577.
https://doi.org/10.1002/jhet.5570320234

[20]. Jönsson, D.; Erlandsson, M.; Undén, A. Solid-phase synthesis of oxygen-bridged tetrahydropyridones. Tetrahedron Lett. 2001, 42, 6953-6956.
https://doi.org/10.1016/S0040-4039(01)01420-4

[21]. Peroni, E.; Caminati, G.; Baglioni, P.; Nuti, F.; Chelli, M.; Papini, A. M. A new lipophilic fluorescent probe for interaction studies of bioactive lipopeptides with membrane models. Bioorg. Med. Chem. Lett. 2002, 12, 1731-1734.
https://doi.org/10.1016/S0960-894X(02)00253-6

[22]. Specht, D. P.; Martic, P. A.; Farid, S. Ketocoumarins. Tetrahedron 1982, 38, 1203-1211.
https://doi.org/10.1016/0040-4020(82)85104-1

[23]. Vekariya, R. H.; Patel, H. D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review. Synth. Commun. 2014, 44, 2756-2788.
https://doi.org/10.1080/00397911.2014.926374

[24]. Cave, G. W. V.; Raston, C. L.; Scott, J. L. Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem. Commun. (Camb.) 2001, 2159-2169.
https://doi.org/10.1002/chin.200207266

[25]. Li, Y.; Gao, W. Effective synthesis oftert-butyl-substituted 3-carboxy coumarins in water using TEBAC as catalyst. Synth. Commun. 2012, 42, 2067-2074.
https://doi.org/10.1080/00397911.2011.552153

[26]. Fiorito, S.; Genovese, S.; Taddeo, V. A.; Epifano, F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett. 2015, 56, 2434-2436.
https://doi.org/10.1016/j.tetlet.2015.03.079

[27]. He, X.; Shang, Y.; Zhou, Y.; Yu, Z.; Han, G.; Jin, W.; Chen, J. Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum's acid and alcohols. Tetrahedron 2015, 71, 863-868.
https://doi.org/10.1016/j.tet.2014.12.042

[28]. Karami, B.; Farahi, M.; Khodabakhshi, S. Rapid synthesis of novel and known coumarin‐3‐carboxylic acids using stannous chloride dihydrate under solvent‐free conditions. Helv. Chim. Acta 2012, 95, 455-460.
https://doi.org/10.1002/hlca.201100342

[29]. Undale, K. A.; Gaikwad, D. S.; Shaikh, T. S.; Desai, U. V.; Pore, D. M. Potassium phosphate catalyzed efficient synthesis of 3-carboxycoumarins. Indian J. Chem. B 2012, 51, 1039-1042 http://hdl.handle.net/123456789/14362.
https://doi.org/10.1002/chin.201246160

[30]. Darvatkar, N. B.; Deorukhkar, A. R.; Bhilare, S. V.; Raut, D. G.; Salunkhe, M. M. Ionic liquid-mediated synthesis of coumarin-3-carboxylic acids via knoevenagel condensation of meldrum's acid with ortho-hydroxyaryl aldehydes. Synth. Commun. 2008, 38, 3508-3513.
https://doi.org/10.1080/00397910802162967

[31]. Maleki, A.; Ravaghi, P.; Movahed, H. Green approach for the synthesis of carboxycoumarins by using a highly active magnetically recyclable nanobiocomposite via sustainable catalysis. Micro Nano Lett. 2018, 13, 591-594.
https://doi.org/10.1049/mnl.2017.0560

[32]. Markad, D.; Khullar, S.; Mandal, S. K. A primary amide-functionalized heterogeneous catalyst for the synthesis of coumarin-3-carboxylic acids via a tandem reaction. Inorg. Chem. 2020, 59, 11407-11416.
https://doi.org/10.1021/acs.inorgchem.0c01178

[33]. Chavan, H. V.; Bandgar, B. P. Aqueous extract of acacia concinna pods: An efficient surfactant type catalyst for synthesis of 3-carboxy coumarins and cinnamic acids via knoevenagel condensation. ACS Sustain. Chem. Eng. 2013, 1, 929-936.
https://doi.org/10.1021/sc4000237

[34]. Brahmachari, G. Room temperature one-pot green synthesis of coumarin-3-carboxylic acids in water: A practical method for the large-scale synthesis. ACS Sustain. Chem. Eng. 2015, 3, 2350-2358.
https://doi.org/10.1021/acssuschemeng.5b00826

[35]. Bagul, S. D.; Rajput, J. D.; Bendre, R. S. Synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels. Environ. Chem. Lett. 2017, 15, 725-731.
https://doi.org/10.1007/s10311-017-0645-z

[36]. Pan, W.-Y.; Xiao, Y.-M.; Xiong, H.-Q.; Lü, C.-W. Et3N catalyzed cascade reaction of Meldrum's acid with ortho-hydroxyaryl aldehydes for the synthesis of coumarin-3-carboxylic acids under solvent-less condition. Res. Chem. Intermed. 2016, 42, 7057-7063.
https://doi.org/10.1007/s11164-016-2517-8

[37]. Lončarić, M.; Sušjenka, M.; Molnar, M. An extensive study of coumarin synthesis via Knoevenagel condensation in choline chloride based deep eutectic solvents. Curr. Org. Synth. 2020, 17, 98-108.
https://doi.org/10.2174/1570179417666200116155704

[38]. You, X.; Yu, H.; Wang, M.; Wu, J.; Shang, Z. A green method for the synthesis of 3-substituted coumarins catalyzed by L-lysine in water via knoevenagel condensation. Lett. Org. Chem. 2012, 9, 19-23.
https://doi.org/10.2174/157017812799303953

[39]. Hekmatshoar, R.; Rezaei, A.; Beheshtiha, S. Y. S. Silica sulfuric acid: A versatile and reusable catalyst for synthesis of coumarin-3-carboxylic acids in a solventless system. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 2491-2496.
https://doi.org/10.1080/10426500802505580

[40]. Mahire, V. N.; Patel, V. E.; Mahulikar, P. P. Facile DES-mediated synthesis and antioxidant potency of benzimidazoquinazolinone motifs. Res. Chem. Intermed. 2017, 43, 1847-1861.
https://doi.org/10.1007/s11164-016-2734-1

[41]. Mahire, V. N.; Patil, G. P.; Deore, A. B.; Chavan, P. G.; Jirimali, H. D.; Mahulikar, P. P. Sulfonated chitosan-encapsulated HAp@Fe3O4: an efficient and recyclable magnetic nanocatalyst for rapid eco-friendly synthesis of 2-amino-4-substituted-1,4-dihydrobenzo[4, 5]imidazo [1,2-a]pyrimidine-3-carbonitriles. Res. Chem. Intermed. 2018, 44, 5801-5815.
https://doi.org/10.1007/s11164-018-3456-3

[42]. Baviskar, P. D.; Mahulikar, P. P. Curd water as a catalytic solvent for the preparation of bis -coumarins. Org. Prep. Proced. Int. 2024, 56, 187-195.
https://doi.org/10.1080/00304948.2023.2239123

[43]. Barge, M.; Kamble, S.; Kumbhar, A.; Rashinkar, G.; Salunkhe, R. Hydrotrope: green and rapid approach for the catalyst-free synthesis of pyrazole derivatives. Monatsh. Chem. 2013, 144, 1213-1218.
https://doi.org/10.1007/s00706-013-0944-4

[44]. McKee, R. H. Use of hydrotropic solutions in industry. Ind. Eng. Chem. 1946, 38, 382-384.
https://doi.org/10.1021/ie50436a012

[45]. Friberg, S. E.; Brancewicz, C.; Morrison, D. S. O/W microemulsions and hydrotropes: The coupling action of a hydrotrope. Langmuir 1994, 10, 2945-2949.
https://doi.org/10.1021/la00021a016

[46]. Kamat, S.; Indi, Y.; Kumbhar, A.; Kamble, S. An aqueous hydrotropic solution as environmentally benign reaction medium for organic transformations: a short review. Res. Chem. Intermed. 2022, 48, 3223-3245.
https://doi.org/10.1007/s11164-022-04761-2

[47]. Sonawane, N. B.; Rajput, J. D.; Patil, D. R. Synthesis of coumarin-3-carboxylic acids in waste curd water: A green approach. Eur. J. Chem. 2023, 14, 439-444.
https://doi.org/10.5155/eurjchem.14.4.439-444.2471

Supporting Agencies

School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon-425 001, MS, India.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).