European Journal of Chemistry

Uptake of selected heavy metals from contaminated waters utilizing cost-effective and environmentally friendly biosorbents prepared from the residues of a traditionally fermented Ethiopian alcoholic beverage (Tella)

Crossmark


Main Article Content

Tesfahun Kebede
Henok Getachew
Abi Legesse
Negussie Megersa

Abstract

In the current study, the adsorption capacity of Tella residues (residues of fermented alcoholic beverage) for quantitative uptake of Cu(II), Cd(II), Zn(II) and Pb(II) was evaluated. Chemical treatment of the local beer residue (LBR) has improved the removal efficiency of the adsorbent, which was achieved at pH = 5, 1.0 g adsorbent, 50 mg/L initial concentration, 180 min contact time and agitation speed of 100 rpm. The adsorption was found to fit the Langmuir adsorption isotherm model, and the theoretical equilibrium capacities were well fitted with the experimental equilibrium capacities, resulting in chemical adsorption (chemisorptions) on the adsorbent surface while the equilibrium kinetics follows the pseudo-second-order. The adsorption capacity (Qo) of LBR decreases in the following order: Zn(II) > Cu(II) > Pb(II) > Cd(II) as metal concentration ranged from 20-200 mg/L. Thermodynamic parameters, including standard free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to predict the nature of adsorption. The negative values of ΔG° and the positive value of ΔH° indicate that the adsorption process was spontaneous and endothermic. Adsorption capacities were found to increase when the temperature ranged from 25-60 °C. Thus, the findings suggest a promising application of LBR as an alternative low-cost novel adsorbent for the removal of toxic heavy metals from wastewater.


icon graph This Abstract was viewed 90 times | icon graph Article PDF downloaded 15 times

How to Cite
(1)
Kebede, T.; Getachew, H.; Legesse, A.; Megersa, N. Uptake of Selected Heavy Metals from Contaminated Waters Utilizing Cost-Effective and Environmentally Friendly Biosorbents Prepared from the Residues of a Traditionally Fermented Ethiopian Alcoholic Beverage (Tella). Eur. J. Chem. 2024, 15, 254-265.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Sen, T. K. Agricultural solid wastes based adsorbent materials in the remediation of heavy metal ions from water and wastewater by adsorption: A review. Molecules 2023, 28, 5575.
https://doi.org/10.3390/molecules28145575

[2]. Malik, D. S.; Jain, C. K.; Yadav, A. K. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl. Water Sci. 2017, 7, 2113-2136.
https://doi.org/10.1007/s13201-016-0401-8

[3]. Babapoor, A.; Rafiei, O.; Mousavi, Y.; Azizi, M. M.; Paar, M.; Nuri, A. Comparison and optimization of operational parameters in removal of heavy metal ions from aqueous solutions by low-cost adsorbents. Int. J. Chem. Eng. 2022, 2022, 1-21.
https://doi.org/10.1155/2022/3282448

[4]. Arana Juve, J.-M.; Christensen, F. M. S.; Wang, Y.; Wei, Z. Electrodialysis for metal removal and recovery: A review. Chem. Eng. J. 2022, 435, 134857.
https://doi.org/10.1016/j.cej.2022.134857

[5]. Kyaw, H. H.; Myint, M. T. Z.; Al-Harthi, S.; Al-Abri, M. Removal of heavy metal ions by capacitive deionization: Effect of surface modification on ions adsorption. J. Hazard. Mater. 2020, 385, 121565.
https://doi.org/10.1016/j.jhazmat.2019.121565

[6]. United Nations World Water Assessment Programme. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; Paris, 2017. https://www.unwater.org/publications/un-world-water-development-report-2017 (accessed April 01, 2024).

[7]. Ondrasik, F.; Krocova, S. Toxicological aspects of wastewater. Eur. J. Chem. 2023, 14, 451-459.
https://doi.org/10.5155/eurjchem.14.4.451-459.2459

[8]. Langat, F. K.; Kibet, J. K.; Okanga, F. I.; Adongo, J. O. Organic contaminants in the groundwater of the Kerio Valley water basin, Baringo County, Kenya. Eur. J. Chem. 2023, 14, 337-347.
https://doi.org/10.5155/eurjchem.14.3.337-347.2458

[9]. Ali Redha, A. Removal of heavy metals from aqueous media by biosorption. Arab J. Basic Appl. Sci. 2020, 27, 183-193.
https://doi.org/10.1080/25765299.2020.1756177

[10]. Kumar, A. Heavy metal concentrations in drinking water in the region north-east of Jhunjhunu, Rajasthan, India. Eur. J. Chem. 2023, 14, 348-352.
https://doi.org/10.5155/eurjchem.14.3.348-352.2435

[11]. Pohl, A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut. 2020, 231, 503.
https://doi.org/10.1007/s11270-020-04863-w

[12]. Saloua, J.; Mohamed, T.; Ahmed, M.; Khadija, M. Industrial rejection: Removal of heavy metals based on chemical precipitation and research for recoverable material in byproducts. Int. J. Eng. Tech. Mgmt. Res. 2020, 7, 39-52.
https://doi.org/10.29121/ijetmr.v7.i2.2020.520

[13]. Zhang, Y.; Duan, X. Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci. Technol. 2020, 81, 1130-1136.
https://doi.org/10.2166/wst.2020.208

[14]. Hussain, S.; Ali, S. Removal of heavy metal by ion exchange using bentonite clay. Inż. Ekol. 2021, 22, 104-111.
https://doi.org/10.12911/22998993/128865

[15]. Vidu, R.; Matei, E.; Predescu, A. M.; Alhalaili, B.; Pantilimon, C.; Tarcea, C.; Predescu, C. Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications. Toxics 2020, 8, 101.
https://doi.org/10.3390/toxics8040101

[16]. El Batouti, M.; Al-Harby, N. F.; Elewa, M. M. A review on promising membrane technology approaches for heavy metal removal from water and wastewater to solve water crisis. Water (Basel) 2021, 13, 3241.
https://doi.org/10.3390/w13223241

[17]. Staszak, K.; Wieszczycka, K. Recovery of metals from wastewater-state-of-the-art solutions with the support of membrane technology. Membranes (Basel) 2023, 13, 114.
https://doi.org/10.3390/membranes13010114

[18]. Covaliu-Mierlă, C. I.; Păunescu, O.; Iovu, H. Recent advances in membranes used for nanofiltration to remove heavy metals from wastewater: A review. Membranes (Basel) 2023, 13, 643.
https://doi.org/10.3390/membranes13070643

[19]. Alghamdi, A. A.; Al-Odayni, A.-B.; Saeed, W. S.; Al-Kahtani, A.; Alharthi, F. A.; Aouak, T. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials (Basel) 2019, 12, 2020.
https://doi.org/10.3390/ma12122020

[20]. Jurgelane, I.; Locs, J. Activated carbon and clay pellets coated with hydroxyapatite for heavy metal removal: Characterization, adsorption, and regeneration. Materials (Basel) 2023, 16, 3605.
https://doi.org/10.3390/ma16093605

[21]. Sharma, G.; Sharma, S.; Kumar, A.; Lai, C. W.; Naushad, M.; Shehnaz; Iqbal, J.; Stadler, F. J. Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorp. Sci. Technol. 2022, 2022, 1-21.
https://doi.org/10.1155/2022/4184809

[22]. Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv. 2023, 13, 4275-4302.
https://doi.org/10.1039/D2RA07911A

[23]. Gebretsadik, H.; Gebrekidan, A.; Demlie, L. Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: An alternate low cost adsorbent. Cogent Chem. 2020, 6, 1720892.
https://doi.org/10.1080/23312009.2020.1720892

[24]. Anastopoulos, I.; Robalds, A.; Tran, H. N.; Mitrogiannis, D.; Giannakoudakis, D. A.; Hosseini-Bandegharaei, A.; Dotto, G. L. Removal of heavy metals by leaves-derived biosorbents. Environ. Chem. Lett. 2019, 17, 755-766.
https://doi.org/10.1007/s10311-018-00829-x

[25]. Baby Shaikh, R.; Saifullah, B.; Rehman, F. ur Greener method for the removal of toxic metal ions from the wastewater by application of agricultural waste as an adsorbent. Water (Basel) 2018, 10 (10), 1316.
https://doi.org/10.3390/w10101316

[26]. Chung, W. J.; Shim, J.; Ravindran, B. Application of wheat bran based biomaterials and nano-catalyst in textile wastewater. J. King Saud Univ. Sci. 2022, 34, 101775.
https://doi.org/10.1016/j.jksus.2021.101775

[27]. Ogata, F.; Kangawa, M.; Iwata, Y.; Ueda, A.; Tanaka, Y.; Kawasaki, N. A study on the adsorption of heavy metals by using raw wheat bran bioadsorbent in aqueous solution phase. Chem. Pharm. Bull. (Tokyo) 2014, 62, 247-253.
https://doi.org/10.1248/cpb.c13-00701

[28]. Altun, T.; Pehlivan, E. Removal of copper(II) ions from aqueous solutions by walnut‐, hazelnut‐ and almond‐shells. Clean (Weinh.) 2007, 35, 601-606.
https://doi.org/10.1002/clen.200700046

[29]. Dias, M.; Pinto, J.; Henriques, B.; Figueira, P.; Fabre, E.; Tavares, D.; Vale, C.; Pereira, E. Nutshells as efficient biosorbents to remove cadmium, lead, and mercury from contaminated solutions. Int. J. Environ. Res. Public Health 2021, 18, 1580.
https://doi.org/10.3390/ijerph18041580

[30]. Okoro, H. K.; Alao, S. M.; Pandey, S.; Jimoh, I.; Basheeru, K. A.; Caliphs, Z.; Ngila, J. C. Recent potential application of rice husk as an eco-friendly adsorbent for removal of heavy metals. Appl. Water Sci. 2022, 12, 259.
https://doi.org/10.1007/s13201-022-01778-1

[31]. Obianyo, J. I. Characterization and removal of nickel (II) from paint industry effluent by rice husk adsorbent. Rwanda J. Eng. Sci. Technol. Environ. 2021, 4(1), 1-19.
https://doi.org/10.4314/rjeste.v4i1.6

[32]. Islam, I. U.; Ahmad, M.; Ahmad, M.; Rukh, S.; Ullah, I. Kinetic studies and adsorptive removal of chromium Cr(VI) from contaminated water using green adsorbent prepared from agricultural waste, rice straw. Eur. J. Chem. 2022, 13, 78-90.
https://doi.org/10.5155/eurjchem.13.1.78-90.2189

[33]. Haddad, M.; Nassar, D.; Shtaya, M. Heavy metals accumulation in soil and uptake by barley (Hordeum vulgare) irrigated with contaminated water. Sci. Rep. 2023, 13, 4121.
https://doi.org/10.1038/s41598-022-18014-0

[34]. Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I.; Jerzykiewicz, M.; Trynda, J. Wheat straw biochar as a specific sorbent of cobalt in soil. Materials (Basel) 2020, 13, 2462.
https://doi.org/10.3390/ma13112462

[35]. Dun, Y.; Wu, C.; Zhou, M.; Tian, X.; Wu, G. Wheat straw- and maize straw-derived biochar effects on the soil cadmium fractions and bioaccumulation in the wheat-maize rotation system. Front. Environ. Sci. 2022, 10.
https://doi.org/10.3389/fenvs.2022.980893

[36]. Tadesse, B.; Teju, E.; Megersa, N. The Teff straw: a novel low-cost adsorbent for quantitative removal of Cr(VI) from contaminated aqueous samples. Desalination Water Treat. 2014, 1-12, 2925-2936.
https://doi.org/10.1080/19443994.2014.968214

[37]. Birhanu, A. M.; Teferra, T. F.; Lema, T. B. Fermentation Dynamics of Ethiopian Traditional Beer (Tella) as Influenced by Substitution of Gesho (Rhamnus prinoides) with Moringa stenopetala: An Innovation for Nutrition. Int. J. Food Sci. 2021, 2021, 1-10.
https://doi.org/10.1155/2021/7083638

[38]. Hotessa, N.; Robe, J. Ethiopian indigenous traditional fermented beverage: The role of the microorganisms toward nutritional and safety value of fermented beverage. Int. J. Microbiol. 2020, 2020, 11, 8891259.
https://doi.org/10.1155/2020/8891259

[39]. Negasi, A.; Fassil, A.; Asnake, D. In vitro evaluation of lactic acid bacteria isolated from traditional fermented Shamita and Kocho for their desirable characteristics as probiotics. Afr. J. Biotechnol. 2017, 16, 594-606.
https://doi.org/10.5897/AJB2016.15307

[40]. Kebede, A.; Kedir, K.; Melak, F.; Asere, T. G. Removal of Cr(VI) from aqueous solutions using biowastes: Tella residue and Pea (Pisum sativum) seed shell. ScientificWorldJournal 2022, 2022, 7554133.
https://doi.org/10.1155/2022/7554133

[41]. Sylwan, I.; Thorin, E. Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: A review. Water (Basel) 2021, 13, 1121.
https://doi.org/10.3390/w13081121

[42]. Teju, E.; Legesse, A.; Megersa, N. The non-edible and disposable parts of oyster mushroom, as novel adsorbent for quantitative removal of atrazine and its degradation products from synthetic wastewater. Heliyon 2024, 10, e26278.
https://doi.org/10.1016/j.heliyon.2024.e26278

[43]. Ali, I. The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Sep. Purif. Rev. 2010, 39, 95-171.
https://doi.org/10.1080/15422119.2010.527802

[44]. Bulut, Y.; Tez, Z. Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. (China) 2007, 19, 160-166.
https://doi.org/10.1016/S1001-0742(07)60026-6

[45]. Dajan, F. T. Synthesis, characterization and study on the sorption property of Fe3O4/Al2O3/ZrO2 nanocomposites toward the removal of cadmium, lead and chromium ions from aqueous solution, MSc Thesis, Haramaya University: Haramaya, 2016. http://ir.haramaya.edu.et/hru/bitstream/handle/123456789/1262/Fekadu%20Tsegaye.pdf?isAllowed=y&sequence=1 (accessed April 01, 2024).

[46]. Nag, S.; Mondal, A.; Bar, N.; Das, S. K. Biosorption of chromium (VI) from aqueous solutions and ANN modelling. Environ. Sci. Pollut. Res. 2017, 24, 18817-18835.
https://doi.org/10.1007/s11356-017-9325-6

[47]. Gaur, N.; Kukreja, A.; Yadav, M.; Tiwari, A. Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent: equilibrium isotherm and thermal stability studies. Appl. Water Sci. 2018, 8, 98.
https://doi.org/10.1007/s13201-018-0743-5

[48]. Farhan, S. N.; Khadom, A. A. Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. Int. J. Ind. Chem. 2015, 6, 119-130.
https://doi.org/10.1007/s40090-015-0038-8

[49]. Kiran, I.; Akar, T.; Tunali, S. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem. 2005, 40, 3550-3558.
https://doi.org/10.1016/j.procbio.2005.03.051

[50]. Osasona, I.; Adebayo, A. O.; Ajayi, O. O. Biosorption of Pb(II) from aqueous solution using cow hooves: Kinetics and thermodynamics. ISRN Phys. Chem. 2013, 2013 (1), 171865.
https://doi.org/10.1155/2013/171865

[51]. Adane, T.; Haile, D.; Dessie, A.; Abebe, Y.; Dagne, H. Response surface methodology as a statistical tool for optimization of removal of chromium (VI) from aqueous solution by Teff (Eragrostis teff) husk activated carbon. Appl. Water Sci. 2020, 10, 1-13.
https://doi.org/10.1007/s13201-019-1120-8

[52]. Wirtu, Y. D.; Melak, F.; Yitbarek, M.; Astatkie, H. Aluminum coated natural zeolite for water defluoridation: A mechanistic insight. Groundw. Sustain. Dev. 2021, 12, 100525.
https://doi.org/10.1016/j.gsd.2020.100525

[53]. Shen, Z.; Jin, F.; Wang, F.; McMillan, O.; Al-Tabbaa, A. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour. Technol. 2015, 193, 553-556.
https://doi.org/10.1016/j.biortech.2015.06.111

[54]. Olafadehan, O. A.; Akpo, O. Y.; Enemuo, O.; Amoo, K. O.; Abatan, O. G. Equilibrium, kinetic and thermodynamic studies of biosorption of zinc ions from industrial wastewater using derived composite biosorbents from walnut shell. Afr. J. Environ. Sci. Tech. 2018, 12, 335-356.
https://doi.org/10.5897/AJEST2018.2515

[55]. Mekonnen, E.; Yitbarek, M.; Soreta, T. R. Kinetic and thermodynamic studies of the adsorption of Cr(VI) onto some selected local adsorbents. S. Afr. J. Chem. 2015, 68, 45-52.
https://doi.org/10.17159/0379-4350/2015/v68a7

[56]. Jain, C. K. Adsorption of zinc onto bed sediments of the River Ganga: adsorption models and kinetics. Hydrol. Sci. J. 2001, 46, 419-434.
https://doi.org/10.1080/02626660109492836

[57]. Wartelle, L. H.; Marshall, W. E. Citric acid modified agricultural by-products as copper ion adsorbents. Adv. Environ. Res. 2000, 4, 1-7.
https://doi.org/10.1016/S1093-0191(00)00002-2

Supporting Agencies

Haramaya University, Haramaya, Ethiopia, Addis Ababa University, Addis Ababa, Ethiopia
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).