European Journal of Chemistry 2010, 1(2), 83-89 | doi: https://doi.org/10.5155/eurjchem.1.2.83-89.26 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Evaluation of global hardness of atoms based on the commonality in the basic philosophy of the origin and the operational significance of the electronegativity and the hardness. Part I. The Gordy’s scale of electronegativity and the G.H.


Nazmul Islam (1) , Dulal C. Ghosh (2,*)

(1) Department of Chemistry, University of Kalyani, Kalyani-741235, India
(2) Department of Chemistry, University of Kalyani, Kalyani-741235, India
(*) Corresponding Author

Received: 31 Mar 2010 | Revised: 03 Jun 2010 | Accepted: 30 Apr 2010 | Published: 15 Jun 2010 | Issue Date: June 2010

Abstract


Relying upon the fact that the hardness, like the electronegativity, is a qualitative property and there is commonality in the basic philosophy of the origin and the operational significance of these two fundamental descriptors of atoms in physics and chemistry, we have proposed to use the Gordy's ansatz, modified by Ghosh and Chakraborty, of evaluating electronegativity of atoms as the ansatz of measuring the global hardness of atoms in this work. The ansatz under reference computes the energy of attraction between the screened nucleus of the atoms and its valence electrons. This is our definition of electronegativity and global hardness of atoms. The evaluated new set of global hardness is found to satisfy the sine qua non of a reasonable scale of hardness by exhibiting perfect periodicity of periods and groups and correlating the gross physico-chemical properties of elements. The inertness of Hg and extreme reactivity of Cs and Fr atoms are nicely correlated. The chemical reactivity and its variation in small steps in the series of lanthanide elements are also nicely reproduced. The results of the present semi-empirical calculation find strong correlation with the results of some sophisticated DFT calculations for a set of atoms.

1_2_83_89_800


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Commonality between electronegativity and hardness; Gordy scale of electronegativity; Scale of global hardness based on potential concept; Periodicity of global hardness of atoms

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.1.2.83-89.26

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 2061 times | icon graph PDF Article downloaded 1839 times


Citations

/


[1]. Asmaa M. Fahim, Amr Mohamed, Medhat A. Ibrahim
Experimental and theoretical studies of some propiolate esters derivatives
Journal of Molecular Structure  1236, 130281, 2021
DOI: 10.1016/j.molstruc.2021.130281
/


[2]. Sibel Demir, Feyza Tinmaz, Necmi Dege, Ilhan Ozer Ilhan
Vibrational spectroscopic studies, NMR, HOMO–LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1 H -pyrazole with use X-ray diffractions and DFT calculations
Journal of Molecular Structure  1108, 637, 2016
DOI: 10.1016/j.molstruc.2015.12.057
/


[3]. Monika Saini, Reetu Sangwan, Mohammad Faheem Khan, Ashok Kumar, Ruchi Verma, Sudha Jain
Specioside (SS) & verminoside (VS) (Iridoid glycosides): isolation, characterization and comparable quantum chemical studies using density functional theory (DFT)
Heliyon  5(1), e01118, 2019
DOI: 10.1016/j.heliyon.2019.e01118
/


[4]. Nazmul Islam, Dulal C. Ghosh
Spectroscopic evaluation of the global hardness of the atoms
Molecular Physics  109(12), 1533, 2011
DOI: 10.1080/00268976.2011.569513
/


[5]. Neetu Choudhary, Saba Bee, Archana Gupta, Poonam Tandon
Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of N-(phenyl)-2,2-dichloroacetamide, N-(2-chloro phenyl)-2,2-dichloroacetamide and N-(4-chloro phenyl)-2,2-dichloroacetamide based on density functional theory
Computational and Theoretical Chemistry  1016, 8, 2013
DOI: 10.1016/j.comptc.2013.04.008
/


[6]. Sandip K. Rajak, Nazmul Islam, Dulal C. Ghosh
Modeling of the Chemico-Physical Process of Protonation of Molecules Entailing Some Quantum Chemical Descriptors
Journal of Quantum Information Science  01(02), 87, 2011
DOI: 10.4236/jqis.2011.12012
/


[7]. Ana Martinez
Dopamine antagonists for the treatment of drug addiction: PF-4363467 and related compounds
European Journal of Chemistry  11(1), 84, 2020
DOI: 10.5155/eurjchem.11.1.84-90.1970
/


[8]. S. K. Rajak, D. C. Ghosh
Correlating the site selectivity of protonation in some ambidentate molecules in terms of the dual descriptor
The European Physical Journal D  66(3), , 2012
DOI: 10.1140/epjd/e2012-20283-6
/


References


[1]. Gilman, J. J. Mat. Res. Innovat. 1997, 1, 71-76.
doi:10.1007/s100190050023

[2]. Pearson, R. G, J. Am. Chem. Soc. 1963, 85, 3533-3539
doi:10.1021/ja00905a001

[3]. Pearson, R. G, Science 1966, 151, 172- 177.
doi:10.1126/science.151.3707.172
PMid:17746330

[4]. Ghosh, D. C.; Islam, N., Int. J. Quantum Chem. 2009, DOI: 10.1002/qua.22415 [Early view].

[5]. Pearson, R. G. J. Chem. Educ. 1999, 76, 267-274.
doi:10.1021/ed076p267

[6]. Pearson, R. G. J. Phys. Chem., 1994, 98, 1989-1992.
doi:10.1021/j100058a044

[7]. Nalewajski, R. F., J. Chem. Phys. 1983, 78, 6112-6120.
doi:10.1063/1.444573

[8]. Yang, W.; Parr, R. G. Uytterhoeven, L. Phys. Chem. Miner. 1987, 15, 191-201.
doi:10.1007/BF00308783

[9]. Ayers P. W.; Yang, W. “Density Functional Theory”, in Computational Medicinal Chemistry for Drug Discovery, Bultinck, P.; Winter, H. D.; Langenaeker, W.; Tollenaere, J. Eds., New York, Dekker, 2003, 571-616.

[10]. Pritchard H. O.; Skinner, H. A. Chem. Rev. 1955, 55, 745-786.
doi:10.1021/cr50004a005

[11]. Ghosh, D. C. J. Indian Chem. Soc. 2003, 80, 527-533.

[12]. Coulson, C. A. Proc. R. Soc. London Ser. A 1951, 207, 63-73.
doi:10.1098/rspa.1951.0099

[13]. Fukui, K. Science 1982, 218, 747-754.
doi:10.1126/science.218.4574.747
PMid:17771019

[14]. Lackner K. S.; Zweig, G. Phys. Rev. D 1983, 28, 1671-1691.
doi:10.1103/PhysRevD.28.1671

[15]. Klopman, G., J. Am. Chem. Soc. 1964, 86, 1463-1469
doi:10.1021/ja01062a001

[16]. Klopman, G, J. Am. Chem. Soc. 1968, 90, 223-234.
doi:10.1021/ja01004a002

[17]. Chermette, H. J. Comput. Chem. 1999, 20, 129-154.
doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

[18]. Parr R. G.; Yang, W. T. Annu. Rev. Phys. Chem. 1995, 46, 701-728.
doi:10.1146/annurev.pc.46.100195.003413

[19]. Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3-10.

[20]. Ayers, P. W.; Anderson, J. S. M; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520-534.
doi:10.1002/qua.20307

[21]. Liu, S. B. Acta Phy. Chim. Sinica 2009, 25, 590-600.

[22]. Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065-2091.
doi:10.1021/cr040109f
PMid:16771443

[23]. Geerlings, P; Proft. F. D; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1874
doi:10.1021/cr990029p
PMid:12744694

[24]. Pearson, R. G. J. Chem. Edu. 1987, 64, 561-567.
doi:10.1021/ed064p561

[25]. Pearson, R. G. Acc. Chem. Res. 1993, 26, 250-255.
doi:10.1021/ar00029a004

[26]. Chattaraj, P. K., Sengupta, S. J. Phys. Chem. 1996, 100, 16126-16130.
doi:10.1021/jp961096f

[27]. Zhou Z.; Parr, R. G. J. Am. Chem. Soc. 1989, 111, 7371-7379.
doi:10.1021/ja00201a014

[28]. Parr R. G.; Chattaraj, P.K. J. Am. Chem. Soc. 1991, 113, 1854-1855.
doi:10.1021/ja00005a072

[29]. Chattaraj P. K.; Nath S.; Sannigrahi, A. B. J. Phys. Chem. 1994, 98, 9143-9145.
doi:10.1021/j100088a009

[30]. Pearson, R. G.; Palke, W. E. J. Phys. Chem. 1992, 96, 3283-3285.
doi:10.1021/j100187a020

[31]. Pal, S.; Vaval N.; Roy, R. J. Phys. Chem. 1993, 97, 4404-4406.
doi:10.1021/j100119a025

[32]. Chattaraj, P. K.; Liu G. H.; Parr, R. G. Chem. Phys. Lett. 1995, 237, 171-176.
doi:10.1016/0009-2614(95)00280-H

[33]. Ayers P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010-2018.
doi:10.1021/ja9924039

[34]. Ghosh, D. C.; Jana, J. Bhattacharyya, S, Int. J. Quantum Chem. 2002, 87, 111-134.
doi:10.1002/qua.10087

[35]. Putz, M.V. Int. J. Quantum Chem. 2009, 109, 733-738.
doi:10.1002/qua.21957

[36]. Frenking G.; Krapp, A. J. Comput. Chem. 2007, 28, 15-24.
doi:10.1002/jcc.20543
PMid:17109434

[37]. Parr,R.G; Ayers, P W.; Nalewajski R. F.; J. Phys. Chem. A, 2005, 109, 3957-3959.
doi:10.1021/jp0404596
PMid:16833715

[38]. Ayers, P. W. Faraday Discuss, 2007, 135, 161-190.
doi:10.1039/b606877d
PMid:17328428

[39]. Gyftpoulous, E. P.; Hatsopoulos, G. N. Proc. Natl. Acad. Sc. 1968, 60, 786-793.
doi:10.1073/pnas.60.3.786

[40]. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547-3551.
doi:10.1021/ja01478a001

[41]. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801-3807.

[42]. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512-7516
doi:10.1021/ja00364a005

[43]. Pearson, R. G. Proc. Natl. Acad. Sci. 1986, 83, 8440-8441.
doi:10.1073/pnas.83.22.8440

[44]. Sen K. D.; Vinayagam, S. C. Chem. Phys. Let. 1988, 144, 178-179.
doi:10.1016/0009-2614(88)87112-4

[45]. Reed, J. L. J. Phys. Chem. A 1997, 101, 7396-7400.
doi:10.1021/jp9711050

[46]. Ghosh, D. C.; Islam, N., Int. J. Quantum Chem. 2009, 109, 110, 1206-1214.

[47]. Ayers, P. W.; Parr, R. G. J. Chem. Phys. 2008, 128, 184108(1)-184108(8).

[48]. Parr, R. G; Bartolotti, L. J. J. Am. Chem. Soc. 1982, 104, 3801-3803.
doi:10.1021/ja00378a004

[49]. Noorizadeh, S; Shakerzadeh, E. J. Phys. Chem. A 2008, 112, 3486-3491.
doi:10.1021/jp709877h
PMid:18331007

[50]. Pearson, R. G. Chem. Commun. 1968, 65-67.
doi:10.1039/c19680000065

[51]. Putz, M. V. Absolute and Chemical Electronegativity and Hardness, Nova Science Publishers, Inc., New York, 2008.

[52]. Putz, M. V.; Russo, N.; Sicilia, E. J. Comput. Chem. 2004, 25, 994-1003.
doi:10.1002/jcc.20027
PMid:15027111

[53]. Putz, M.V. J. Theoret. Comput. Chem. 2007, 6, 33-47.
doi:10.1142/S0219633607002861

[54]. Putz, M.V. MATCH Commun. Math. Comput. Chem. 2008, 60, 845-868.

[55]. March, N. H; White, R. J. J. Phys. B 1972, 5, 466-475.
doi:10.1088/0022-3700/5/3/011

[56]. Li, K.; Wang, X.; Zhang,F.; Xue, D. Phys. Rev. Lett. 2008, 100, 235504(1)- 235504(4).

[57]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22500, [Early View].

[58]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22651 [Early View].

[59]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22499, [Early View].

[60]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010 DOI: 10.1002/qua.22508, [Early View].

[61]. Ghosh; D. C.; Islam, N. Int. J. Quantum Chem., 2010, DOI: 10.1002/qua.22653 [Early View].

[62]. Gordy, W. Phys. Rev, 1946, 69, 604-607.
doi:10.1103/PhysRev.69.604

[63]. Ghosh, D. C.; Chakraborty, T. J. Mol. Str.-Theochem. 2009, 906, 87-93.
doi:10.1016/j.theochem.2009.04.007

[64]. Ghosh, D. C; Biswas, R; Chakraborty, T; Islam, N; Rajak, S. K, J. Mol. Str.-Theochem. 2008, 865, 60-67.
doi:10.1016/j.theochem.2008.06.020

[65]. Pearson, R. G. Inorg. Chem. 1988, 27, 734-740.
doi:10.1021/ic00277a030

[66]. Putz, M. V. Int. J. Quantum. Chem. 2006, 106, 361–389.
doi:10.1002/qua.20787

[67]. Robles, J.; Bartolotti, L. J. J. Am. Chem. Soc. 1984, 106, 3723-3727.
doi:10.1021/ja00325a003


How to cite


Islam, N.; Ghosh, D. Eur. J. Chem. 2010, 1(2), 83-89. doi:10.5155/eurjchem.1.2.83-89.26
Islam, N.; Ghosh, D. Evaluation of global hardness of atoms based on the commonality in the basic philosophy of the origin and the operational significance of the electronegativity and the hardness. Part I. The Gordy’s scale of electronegativity and the G.H.. Eur. J. Chem. 2010, 1(2), 83-89. doi:10.5155/eurjchem.1.2.83-89.26
Islam, N., & Ghosh, D. (2010). Evaluation of global hardness of atoms based on the commonality in the basic philosophy of the origin and the operational significance of the electronegativity and the hardness. Part I. The Gordy’s scale of electronegativity and the G.H.. European Journal of Chemistry, 1(2), 83-89. doi:10.5155/eurjchem.1.2.83-89.26
Islam, Nazmul, & Dulal C. Ghosh. "Evaluation of global hardness of atoms based on the commonality in the basic philosophy of the origin and the operational significance of the electronegativity and the hardness. Part I. The Gordy’s scale of electronegativity and the G.H.." European Journal of Chemistry [Online], 1.2 (2010): 83-89. Web. 4 Jun. 2023
Islam, Nazmul, AND Ghosh, Dulal. "Evaluation of global hardness of atoms based on the commonality in the basic philosophy of the origin and the operational significance of the electronegativity and the hardness. Part I. The Gordy’s scale of electronegativity and the G.H." European Journal of Chemistry [Online], Volume 1 Number 2 (15 June 2010)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.1.2.83-89.26


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2010, 1(2), 83-89 | doi: https://doi.org/10.5155/eurjchem.1.2.83-89.26 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.