European Journal of Chemistry

Click chemistry in tuberculosis research: From drug design to therapeutic delivery - A systematic review

Crossmark


Main Article Content

Zimo Ren
Paolo Coghi

Abstract

The molecular hybridization of 1,2,3-triazoles with various bioactive scaffolds has become a promising approach to the development of new antitubercular drugs, offering a versatile platform for improving drug efficacy and specificity. This review covers key advancements over the past decade in creating triazole-based hybrids that integrate azoles, coumarin/chromene, isoniazid, quinoline/dihydroquinoline, quinolone, ferrocene, isatin, furan, and other structures. These hybrid molecules generally show improved potency against both drug-sensitive and drug-resistant Mycobacterium tuberculosis strains while maintaining favorable toxicity profiles, making them particularly valuable in the current landscape of rising drug resistance. Structure-activity relationship (SAR) studies highlight that strategic substituent positioning and optimal linker selection are critical in enhancing antimycobacterial efficacy. Furthermore, modifications to the electronic and steric properties of the hybrids have been shown to influence their ability to bypass common resistance mechanisms, underscoring the potential of these compounds to overcome treatment barriers. In particular, several of these hybrids demonstrate promising activity against MDR-TB and XDR-TB strains, suggesting potential applications for immunocompromised patients, such as those with HIV co-infection. Collectively, these findings offer valuable insights for the rational design of next-generation antituberculosis agents that could transform tuberculosis (TB) treatment paradigms in both resistant and sensitive cases of TB.


icon graph This Abstract was viewed 314 times | icon graph Article PDF downloaded 84 times

How to Cite
(1)
Ren, Z.; Coghi, P. Click Chemistry in Tuberculosis Research: From Drug Design to Therapeutic Delivery - A Systematic Review. Eur. J. Chem. 2025, 16, 83-96.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Tripathi, R. P.; Tewari, N.; Dwivedi, N.; Tiwari, V. K. Fighting tuberculosis: An old disease with new challenges. Med. Res. Rev. 2005, 25 (1), 93-131.
https://doi.org/10.1002/med.20017

[2]. Bagcchi, S. WHO's Global Tuberculosis Report 2022. Lancet Microbe. 2023, 4 (1), e20.
https://doi.org/10.1016/S2666-5247(22)00359-7

[3]. Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393 (10181), 1642-1656.
https://doi.org/10.1016/S0140-6736(19)30308-3

[4]. Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K. E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E. A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G. K.; Pasipanodya, J. G.; Rodrigues, C.; Clark, T. G.; Sirgel, F. A.; Esmail, A.; Lin, H.; Atre, S. R.; Schaaf, H. S.; Chang, K. C.; Lange, C.; Nahid, P.; Udwadia, Z. F.; Horsburgh, C. R.; Churchyard, G. J.; Menzies, D.; Hesseling, A. C.; Nuermberger, E.; McIlleron, H.; Fennelly, K. P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C. M.; Padayatchi, N.; Warren, R. M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017, 5 (4), 291-360.
https://doi.org/10.1016/S2213-2600(17)30079-6

[5]. Falzon, D.; Jaramillo, E.; Schünemann, H.; Arentz, M.; Bauer, M.; Bayona, J.; Blanc, L.; Caminero, J.; Daley, C.; Duncombe, C.; Fitzpatrick, C.; Gebhard, A.; Getahun, H.; Henkens, M.; Holtz, T.; Keravec, J.; Keshavjee, S.; Khan, A.; Kulier, R.; Leimane, V.; Lienhardt, C.; Lu, C.; Mariandyshev, A.; Migliori, G.; Mirzayev, F.; Mitnick, C.; Nunn, P.; Nwagboniwe, G.; Oxlade, O.; Palmero, D.; Pavlinac, P.; Quelapio, M.; Raviglione, M.; Rich, M.; Royce, S.; Rüsch-Gerdes, S.; Salakaia, A.; Sarin, R.; Sculier, D.; Varaine, F.; Vitoria, M.; Walson, J.; Wares, F.; Weyer, K.; White, R.; Zignol, M. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. Eur. Respir. J. 2011, 38 (3), 516-528.
https://doi.org/10.1183/09031936.00073611

[6]. Zumla, A. I.; Gillespie, S. H.; Hoelscher, M.; Philips, P. P.; Cole, S. T.; Abubakar, I.; McHugh, T. D.; Schito, M.; Maeurer, M.; Nunn, A. J. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect. Dis. 2014, 14 (4), 327-340.
https://doi.org/10.1016/S1473-3099(13)70328-1

[7]. Getahun, H.; Matteelli, A.; Chaisson, R. E.; Raviglione, M. LatentMycobacterium tuberculosisInfection. N. Engl. J. Med. 2015, 372 (22), 2127-2135.
https://doi.org/10.1056/NEJMra1405427

[8]. Nathavitharana, R. R.; Friedland, J. S. A tale of two global emergencies: tuberculosis control efforts can learn from the Ebola outbreak. Eur. Respir. J. 2015, 46 (2), 293-296.
https://doi.org/10.1183/13993003.00436-2015

[9]. Zhao, G.; Li, Z.; Zhang, R.; Zhou, L.; Zhao, H.; Jiang, H. Tetrazine bioorthogonal chemistry derived in vivo imaging. Front. Mol. Biosci. 2022, 9, 1055823.
https://doi.org/10.3389/fmolb.2022.1055823

[10]. Kuan, H.; Xie, Y.; Guo, Y.; Gianoncelli, A.; Ribaudo, G.; Coghi, P. (2R, 4S, 5S) 1-(4-(4-(((7-Chloroquinolin-4-yl)amino)methyl)-1H-1,2,3-triazol -1-yl)-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione. Molbank 2023, 2023 (3), M1681.
https://doi.org/10.3390/M1681

[11]. Fai, L. K.; Anyanwu, M.; Ai, J.; Xie, Y.; Gianoncelli, A.; Ribaudo, G.; Coghi, P. 4-(4-(((1H-Benzo[d][1,2,3]triazol-1-yl)oxy)methyl)-1H-1,2,3-triaz ol-1-yl)-7-chloroquinoline. Molbank 2022, 2022 (3), M1404.
https://doi.org/10.3390/M1404

[12]. Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov. 2019, 14 (8), 779-789.
https://doi.org/10.1080/17460441.2019.1614910

[13]. Yun, X.; Xie, Y.; Ng, J. P.; Law, B. Y.; Wong, V. K.; Coghi, P. 2-Bromo-3-((1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl)-methoxy)-benz aldehyde. Molbank 2022, 2022 (1), M1351.
https://doi.org/10.3390/M1351

[14]. Ng, J. P.; Xiao Yun, Y.; Adnan Nasim, A.; Gianoncelli, A.; Yuan Kwan Law, B.; Ribaudo, G.; Kam Wai Wong, V.; Coghi, P. Synthesis, docking studies and biological evaluation of 1H-1,2,3-triazole-7-chloroquinoline derivatives against SARS-CoV-2. Bioorg. Chem. 2023, 141, 106882.
https://doi.org/10.1016/j.bioorg.2023.106882

[15]. Ren, Z.; Coghi, P. Exploring medicinal potential and drug delivery solutions of Celastrol from the Chinese "Thunder of God Vine". Eur. J. Chem. 2024, 15 (2), 194-204.
https://doi.org/10.5155/eurjchem.15.2.194-204.2534

[16]. Bandi, S. R.; Kavitha, N.; Nukala, S. K.; Thirukovela, N. S.; Manchal, R.; Palabindela, R.; Narsimha, S. Synthesis and biological evaluation of novel [1,2,3]triazolo-pyrrolo[1,2-a]pyrido[4,3-d]pyrimidines as EGFR targeting anticancer agents. J. Mol. Struct. 2023, 1274, 134378.
https://doi.org/10.1016/j.molstruc.2022.134378

[17]. Jamagne, R.; Power, M. J.; Zhang, Z.; Zango, G.; Gibber, B.; Leigh, D. A. Active template synthesis. Chem. Soc. Rev. 2024, 53 (20), 10216-10252.
https://doi.org/10.1039/D4CS00430B

[18]. Saraiva, N. M.; Alves, A.; Costa, P. C.; Correia-da-Silva, M. Click Chemistry in Polymersome Technology. Pharmaceuticals 2024, 17 (6), 747.
https://doi.org/10.3390/ph17060747

[19]. Agrahari, A. K.; Bose, P.; Jaiswal, M. K.; Rajkhowa, S.; Singh, A. S.; Hotha, S.; Mishra, N.; Tiwari, V. K. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem. Rev. 2021, 121 (13), 7638-7956.
https://doi.org/10.1021/acs.chemrev.0c00920

[20]. Mamidyala, S. K.; Finn, M. G. In situ click chemistry: probing the binding landscapes of biological molecules. Chem. Soc. Rev. 2010, 39 (4), 1252.
https://doi.org/10.1039/b901969n

[21]. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40 (11), 2004-2021.
https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.3.CO;2-X

[22]. Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3‐Triazoles as Pharmacophores. Chemistry An Asian Journal 2011, 6 (10), 2696-2718.
https://doi.org/10.1002/asia.201100432

[23]. Teneva, Y.; Simeonova, R.; Valcheva, V.; Angelova, V. T. Recent Advances in Anti-Tuberculosis Drug Discovery Based on Hydrazide-Hydrazone and Thiadiazole Derivatives Targeting InhA. Pharmaceuticals 2023, 16 (4), 484.
https://doi.org/10.3390/ph16040484

[24]. Palomino, J. C. Current Developments and Future Perspectives For Tb Diagnostics. Future Microbiol. 2011, 7 (1), 59-71.
https://doi.org/10.2217/fmb.11.133

[25]. Peloquin, C. A.; Davies, G. R. The Treatment of Tuberculosis. Clin. Pharma Therapeutics 2021, 110 (6), 1455-1466.
https://doi.org/10.1002/cpt.2261

[26]. Inturi, B.; Pujar, G. V.; Purohit, M. N. Recent Advances and Structural Features of Enoyl‐ACP Reductase Inhibitors of Mycobacterium tuberculosis. Arch. Pharm. 2016, 349 (11), 817-826.
https://doi.org/10.1002/ardp.201600186

[27]. Karaźniewicz-Łada, M.; Kosicka-Noworzyń, K.; Rao, P.; Modi, N.; Xie, Y. L.; Heysell, S. K.; Kagan, L. New approach to rifampicin stability and first-line anti-tubercular drug pharmacokinetics by UPLC-MS/MS. J. Pharm. Biomed. Anal. 2023, 235, 115650.
https://doi.org/10.1016/j.jpba.2023.115650

[28]. Sutradhar, I.; Zaman, M. H. Evaluation of the effect of temperature on the stability and antimicrobial activity of rifampicin quinone. J. Pharm. Biomed. Anal. 2021, 197, 113941.
https://doi.org/10.1016/j.jpba.2021.113941

[29]. Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click Chemistry for Drug Development and Diverse Chemical-Biology Applications. Chem. Rev. 2013, 113 (7), 4905-4979.
https://doi.org/10.1021/cr200409f

[30]. Li, L.; Zhang, Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules 2016, 21 (10), 1393.
https://doi.org/10.3390/molecules21101393

[31]. Sharma, A.; Agrahari, A. K.; Rajkhowa, S.; Tiwari, V. K. Emerging impact of triazoles as anti-tubercular agent. Eur. J. Med. Chem. 2022, 238, 114454.
https://doi.org/10.1016/j.ejmech.2022.114454

[32]. Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today 2017, 22 (10), 1572-1581.
https://doi.org/10.1016/j.drudis.2017.05.014

[33]. Voigt, M.; Fritz, T.; Worm, M.; Frey, H.; Helm, M. Surface Modification of Nanoparticles and Nanovesicles via Click-Chemistry. Methods Mol. Biol. 2019, 235-245.
https://doi.org/10.1007/978-1-4939-9516-5_16

[34]. Shaikh, M. H.; Subhedar, D. D.; Arkile, M.; Khedkar, V. M.; Jadhav, N.; Sarkar, D.; Shingate, B. B. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett. 2016, 26 (2), 561-569.
https://doi.org/10.1016/j.bmcl.2015.11.071

[35]. Jewett, J. C.; Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39 (4), 1272.
https://doi.org/10.1039/b901970g

[36]. Krajczyk, A.; Zeidler, J.; Januszczyk, P.; Dawadi, S.; Boshoff, H. I.; Barry, C. E.; Ostrowski, T.; Aldrich, C. C. 2-Aryl-8-aza-3-deazaadenosine analogues of 5′-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg. Amp; Med. Chem. 2016, 24 (14), 3133-3143.
https://doi.org/10.1016/j.bmc.2016.05.037

[37]. Hoyle, C.; Bowman, C. Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. 2010, 49 (9), 1540-1573.
https://doi.org/10.1002/anie.200903924

[38]. Lü, S.; Wang, Z.; Zhu, S. Thiol-Yne click chemistry of acetylene-enabled macrocyclization. Nat. Commun. 2022, 13 (1).
https://doi.org/10.1038/s41467-022-32723-0

[39]. Bajaj, A. O.; Saraswat, S.; Knuuttila, J. E.; Freeke, J.; Stielow, J. B.; Barker, A. P. Accurate Identification of Closely Related Mycobacterium tuberculosis Complex Species by High Resolution Tandem Mass Spectrometry. Front. Cell. Infect. Microbiol. 2021, 11.
https://doi.org/10.3389/fcimb.2021.656880

[40]. Romanov, R. S.; Mariasina, S. S.; Efimov, S. V.; Klochkov, V. V.; Rodina, E. V.; Polshakov, V. I. Backbone resonance assignment and dynamics of 110 kDa hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis. Biomol NMR. Assign 2020, 14 (2), 281-287.
https://doi.org/10.1007/s12104-020-09962-7

[41]. Johnpasha, S.; Palabindela, R.; Azam, M.; Kapavarapu, R.; Nasipireddy, V.; Al-Resayes, S. I.; Narsimha, S. Synthesis and anti-breast cancer evaluation of fused imidazole-imidazo[1,2-c][1,2,3]triazoles: PEG-400 mediated one-pot reaction under ultrasonic irradiation. J. Mol. Struct. 2024, 1312, 138440.
https://doi.org/10.1016/j.molstruc.2024.138440

[42]. Brozyna-Heredia, I. Y.; Ganoza-Yupanqui, M. L.; Moreno-Exebio, L.; Dos Santos, J. L. Chromatographic Methods for the Determination of Rifampicin, Isoniazid, Pyrazinamide, Ethambutol, and Main Metabolites in Biological Samples: A Review. Crit. Rev. Anal. Chem. 2022, 54 (7), 1971-1986.
https://doi.org/10.1080/10408347.2022.2150071

[43]. Peyton, L.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today 2015, 51 (12), 705.
https://doi.org/10.1358/dot.2015.51.12.2421058

[44]. Kaur, R.; Ranjan Dwivedi, A.; Kumar, B.; Kumar, V. Recent Developments on 1,2,4-Triazole Nucleus in Anticancer Compounds: A Review. ACAMC. 2016, 16 (4), 465-489.
https://doi.org/10.2174/1871520615666150819121106

[45]. Nagavelli, V. R.; Nukala, S. K.; Narsimha, S.; Battula, K. S.; Tangeda, S. J.; Reddy, Y. N. Synthesis, characterization and biological evaluation of 7-substituted- 4-((1-aryl-1H-1,2,3-triazol-4-yl) methyl)-2H-benzo[b] [1,4]oxazin- 3(4H)-ones as anticancer agents. Med. Chem. Res. 2016, 25 (9), 1781-1793.
https://doi.org/10.1007/s00044-016-1616-9

[46]. Narsimha, S.; Satheesh Kumar, N.; Kumara Swamy, B.; Vasudeva Reddy, N.; Althaf Hussain, S.; Srinivasa Rao, M. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: Synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg. amp; Med. Chem. Lett. 2016, 26 (6), 1639-1644.
https://doi.org/10.1016/j.bmcl.2016.01.055

[47]. Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.; Chang, L.; Lv, Z.; Feng, L. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 2017, 138, 501-513.
https://doi.org/10.1016/j.ejmech.2017.06.051

[48]. Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem. 2019, 168, 357-372.
https://doi.org/10.1016/j.ejmech.2019.02.055

[49]. Ramya Sucharitha, E.; Krishna, T. M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo[1,3]thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett. 2021, 47, 128201.
https://doi.org/10.1016/j.bmcl.2021.128201

[50]. Song, M.; Deng, X. Recent developments on triazole nucleus in anticonvulsant compounds: a review. J. Enzyme Inhib. Med. Chem. 2018, 33 (1), 453-478.
https://doi.org/10.1080/14756366.2017.1423068

[51]. Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh Kumar, G.; Poornachandra, Y.; Ganesh Kumar, C.; Vasamsetti, S. B.; Kotamraju, S.; Narsaiah, B. Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur. J. Med. Chem. 2014, 80, 184-191.
https://doi.org/10.1016/j.ejmech.2014.04.052

[52]. Ang, C. W.; Jarrad, A. M.; Cooper, M. A.; Blaskovich, M. A. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J. Med. Chem. 2017, 60 (18), 7636-7657.
https://doi.org/10.1021/acs.jmedchem.7b00143

[53]. Munagala, G.; Yempalla, K. R.; Singh, S.; Sharma, S.; Kalia, N. P.; Rajput, V. S.; Kumar, S.; Sawant, S. D.; Khan, I. A.; Vishwakarma, R. A.; Singh, P. P. Synthesis of new generation triazolyl- and isoxazolyl-containing 6-nitro-2,3-dihydroimidazooxazoles as anti-TB agents: in vitro, structure-activity relationship, pharmacokinetics and in vivo evaluation. Org. Biomol. Chem. 2015, 13 (12), 3610-3624.
https://doi.org/10.1039/C5OB00054H

[54]. Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. One-pot synthesis of new triazole-Imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorg. amp; Med. Chem. Lett. 2015, 25 (19), 4169-4173.
https://doi.org/10.1016/j.bmcl.2015.08.009

[55]. Reddyrajula, R.; Dalimba, U. K. Structural modification of zolpidem led to potent antimicrobial activity in imidazo[1,2-a]pyridine/ pyrimidine-1,2,3-triazoles. New J. Chem. 2019, 43 (41), 16281-16299.
https://doi.org/10.1039/C9NJ03462E

[56]. Amaroju, S.; Kalaga, M. N.; Srinivasarao, S.; Napiórkowska, A.; Augustynowicz-Kopeć, E.; Murugesan, S.; Chander, S.; Krishnan, R.; Chandra Sekhar, K. V. Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. New J. Chem. 2017, 41 (1), 347-357.
https://doi.org/10.1039/C6NJ02671K

[57]. Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and Biological Properties of Coumarin Derivatives. A Review. Chemistry Select 2021, 6 (24), 5848-5870.
https://doi.org/10.1002/slct.202101346

[58]. Naik, R. J.; Kulkarni, M. V.; Sreedhara Ranganath Pai, K.; Nayak, P. G. Click Chemistry Approach for Bis‐Chromenyl Triazole Hybrids and Their Antitubercular Activity. Chem. Biol. Drug. Des. 2012, 80 (4), 516-523.
https://doi.org/10.1111/j.1747-0285.2012.01441.x

[59]. Anand, A.; Naik, R. J.; Revankar, H. M.; Kulkarni, M. V.; Dixit, S. R.; Joshi, S. D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem. 2015, 105, 194-207.
https://doi.org/10.1016/j.ejmech.2015.10.019

[60]. Hu, Y.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.; Lv, Z.; Xu, Z.; Wu, X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 2017, 133, 255-267.
https://doi.org/10.1016/j.ejmech.2017.04.002

[61]. Badar, A. D.; Sulakhe, S. M.; Muluk, M. B.; Rehman, N. N.; Dixit, P. P.; Choudhari, P. B.; Rekha, E. M.; Sriram, D.; Haval, K. P. Synthesis of isoniazid‐1,2,3‐triazole conjugates: Antitubercular, antimicrobial evaluation and molecular docking study. J. Heterocyclic Chem. 2020, 57 (10), 3544-3557.
https://doi.org/10.1002/jhet.4072

[62]. Boechat, N.; Ferreira, V. F.; Ferreira, S. B.; Ferreira, M. d.; da Silva, F. d.; Bastos, M. M.; Costa, M. d.; Lourenço, M. C.; Pinto, A. C.; Krettli, A. U.; Aguiar, A. C.; Teixeira, B. M.; da Silva, N. V.; Martins, P. R.; Bezerra, F. A.; Camilo, A. L.; da Silva, G. P.; Costa, C. C. Novel 1,2,3-Triazole Derivatives for Use against Mycobacterium tuberculosis H37Rv (ATCC 27294) Strain. J. Med. Chem. 2011, 54 (17), 5988-5999.
https://doi.org/10.1021/jm2003624

[63]. Patil, P. S.; Kasare, S. L.; Haval, N. B.; Khedkar, V. M.; Dixit, P. P.; Rekha, E. M.; Sriram, D.; Haval, K. P. Novel isoniazid embedded triazole derivatives: Synthesis, antitubercular and antimicrobial activity evaluation. Bioorg. amp; Med. Chem. Lett. 2020, 30 (19), 127434.
https://doi.org/10.1016/j.bmcl.2020.127434

[64]. Kumar, D.; Beena; Khare, G.; Kidwai, S.; Tyagi, A. K.; Singh, R.; Rawat, D. S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem. 2014, 81, 301-313.
https://doi.org/10.1016/j.ejmech.2014.05.005

[65]. Ajani, O. O.; Iyaye, K. T.; Ademosun, O. T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - a review. RSC Adv. 2022, 12, 18594-18614.
https://doi.org/10.1039/D2RA02896D

[66]. Worley, M. V.; Estrada, S. J. Bedaquiline: A Novel Antitubercular Agent for the Treatment of Multidrug-Resistant Tuberculosis. Pharmacotherapy 2014, 34 (11), 1187-1197.
https://doi.org/10.1002/phar.1482

[67]. Thomas, K.; Adhikari, A. V.; Chowdhury, I. H.; Sumesh, E.; Pal, N. K. New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur. J. Med. Chem. 2011, 46 (6), 2503-2512.
https://doi.org/10.1016/j.ejmech.2011.03.039

[68]. Marvadi, S. K.; Krishna, V. S.; Sriram, D.; Kantevari, S. Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorg. amp; Med. Chem. Lett. 2019, 29 (4), 529-533.
https://doi.org/10.1016/j.bmcl.2019.01.004

[69]. Pogaku, V.; Krishna, V. S.; Balachandran, C.; Rangan, K.; Sriram, D.; Aoki, S.; Basavoju, S. The design and green synthesis of novel benzotriazoloquinolinyl spirooxindolopyrrolizidines: antimyco bacterial and antiproliferative studies. New J. Chem. 2019, 43 (44), 17511-17520.
https://doi.org/10.1039/C9NJ03802G

[70]. Shinde, A. D.; Nandurkar, Y. M.; Bhalekar, S.; Walunj, Y. S.; Ugale, S.; Ahmad, I.; Patel, H.; Chavan, A. P.; Mhaske, P. C. Investigation of new 1,2,3-triazolyl-quinolinyl-propan-2-ol derivatives as potential antimicrobial agents:in vitro and in silico approach. J. Biomol. Struct. Dyn. 2023, 42 (3), 1191-1207.
https://doi.org/10.1080/07391102.2023.2217922

[71]. Kushawaha, A. K.; Jaiswal, A. K.; Gupta, J.; Katiyar, S.; Ansari, A.; Bhatt, H.; Sharma, S. K.; Choudhury, A. D.; Bhatta, R. S.; Singh, B. N.; Sashidhara, K. V. Antitubercular evaluation of dihydropyridine-triazole conjugates: design, synthesis, in vitro screening, SAR and in silico ADME predictions. RSC. Med. Chem. 2024, 15 (8), 2867-2881.
https://doi.org/10.1039/D4MD00377B

[72]. Lungu, I.; Moldovan, O.; Biriș, V.; Rusu, A. Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022, 14 (8), 1749.
https://doi.org/10.3390/pharmaceutics14081749

[73]. Ramachandran, G.; Swaminathan, S. Safety and Tolerability Profile of Second-Line Anti-Tuberculosis Medications. Drug Saf. 2015, 38 (3), 253-269.
https://doi.org/10.1007/s40264-015-0267-y

[74]. De Souza, M.; Vasconcelos, T.; Almeida, M.; Cardoso, S. Fluoroquinolones: An Important Class of Antibiotics Against Tuberculosis. CMC. 2006, 13 (4), 455-463.
https://doi.org/10.2174/092986706775527965

[75]. Sriram, D.; Aubry, A.; Yogeeswari, P.; Fisher, L. Gatifloxacin derivatives: Synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Bioorg. Med. Chem. Lett. 2006, 16 (11), 2982-2985.
https://doi.org/10.1016/j.bmcl.2006.02.065

[76]. Xu, Z.; Song, X.; Qiang, M.; Lv, Z. 1H‐1,2,3‐triazole‐tethered 8‐OMe Ciprofloxacin and Isatin Hybrids: Design, Synthesis and in vitro Anti‐mycobacterial Activities. J. Heterocyclic Chem. 2017, 54 (6), 3735-3741.
https://doi.org/10.1002/jhet.2980

[77]. Xu, Z.; Song, X.; Hu, Y.; Qiang, M.; Lv, Z. Design, Synthesis and In Vitro Anti‐mycobacterial Activities of 8‐OMe Ciprofloxacin‐1H‐1,2,3‐triazole‐isatin‐(thio) Semicarbazide/Oxime Hybrids. J. Heterocyclic Chem. 2017, 55 (1), 192-198.
https://doi.org/10.1002/jhet.3024

[78]. Xu, Z.; Lv, Z.; Song, X.; Qiang, M. Ciprofloxacin‐isatin‐1H‐1,2,3‐triazole Hybrids: Design, Synthesis, and in vitro Anti‐tubercular Activity against M. tuberculosis. J. Heterocyclic Chem. 2017, 55 (1), 97-102.
https://doi.org/10.1002/jhet.3010

[79]. Chen, R.; Zhang, H.; Ma, T.; Xue, H.; Miao, Z.; Chen, L.; Shi, X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg. Med. Chem. Lett. 2019, 29 (18), 2635-2637.
https://doi.org/10.1016/j.bmcl.2019.07.041

[80]. Ding, Z.; Hou, P.; Liu, B. Gatifloxacin‐1,2,3‐triazole‐isatin hybrids and their antimycobacterial activities. Arch. Pharm. 2019, 352 (10).
https://doi.org/10.1002/ardp.201900135

[81]. Kumar, K.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. 1H-1,2,3-Triazole-Tethered Isatin-Ferrocene and Isatin-Ferrocenylchalcone Conjugates: Synthesis and in Vitro Antitubercular Evaluation. Organometallics 2013, 32 (20), 5713-5719.
https://doi.org/10.1021/om301157z

[82]. Singh, A.; Biot, C.; Viljoen, A.; Dupont, C.; Kremer, L.; Kumar, K.; Kumar, V. 1H‐1,2,3‐triazole‐tethered uracil‐ferrocene and uracil‐ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation. Chem. Biol. Drug. Des. 2016, 89 (6), 856-861.
https://doi.org/10.1111/cbdd.12908

[83]. Kancharla, S. K.; Birudaraju, S.; Pal, A.; Krishnakanth Reddy, L.; Reddy, E. R.; Vagolu, S. K.; Sriram, D.; Bonige, K. B.; Korupolu, R. B. Synthesis and biological evaluation of isatin oxime ether-tethered aryl 1H-1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. New J. Chem. 2022, 46 (6), 2863-2874.
https://doi.org/10.1039/D1NJ05171G

[84]. Sharma, B.; Kumar, S.; Preeti; Johansen, M. D.; Kremer, L.; Kumar, V. 1H‐1,2,3‐triazole embedded Isatin‐Benzaldehyde‐bis(heteronuclear hydrazones): design, synthesis, antimycobacterial, and cytotoxic evaluation. Chem. Biol. Drug. Des. 2021, 99 (2), 301-307.
https://doi.org/10.1111/cbdd.13984

[85]. Shaikh, M. H.; Subhedar, D. D.; Khan, F. A.; Sangshetti, J. N.; Nawale, L.; Arkile, M.; Sarkar, D.; Shingate, B. B. Synthesis of Novel Triazole‐incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study. J. Heterocyclic Chem. 2016, 54 (1), 413-421.
https://doi.org/10.1002/jhet.2598

[86]. Zhao, S.; Lv, Z.; Deng, J.; Gao, F.; Zhang, G.; Xu, Z. Design, Synthesis, and In Vitro Anti‐mycobacterial Activities of 1,2,3‐Triazole‐tetraethylene Glycol Tethered Isatin Dimers. J. Heterocyclic Chem. 2018, 55 (12), 3006-3010.
https://doi.org/10.1002/jhet.3349

[87]. Kedderis, G. L.; Miwa, G. T. The metabolic activation of nitroheterocyclic therapeutic agents. Drug Metab. Rev. 1988, 19 (1), 33-62.
https://doi.org/10.3109/03602538809049618

[88]. Jordão, A. K.; Sathler, P. C.; Ferreira, V. F.; Campos, V. R.; de Souza, M. C.; Castro, H. C.; Lannes, A.; Lourenco, A.; Rodrigues, C. R.; Bello, M. L.; Lourenco, M. C.; Carvalho, G. S.; Almeida, M. C.; Cunha, A. C. Synthesis, antitubercular activity, and SAR study of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides. Bioorg. Med. Chem. 2011, 19 (18), 5605-5611.
https://doi.org/10.1016/j.bmc.2011.07.035

[89]. Yempala, T.; Sridevi, J. P.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem. 2014, 71, 160-167.
https://doi.org/10.1016/j.ejmech.2013.10.082

[90]. McMurry, L. M.; McDermott, P. F.; Levy, S. B. Genetic Evidence that InhA of Mycobacterium smegmatis Is a Target for Triclosan. Antimicrob. Agents Chemother. 1999, 43 (3), 711-713.
https://doi.org/10.1128/AAC.43.3.711

[91]. Menendez, C.; Chollet, A.; Rodriguez, F.; Inard, C.; Pasca, M. R.; Lherbet, C.; Baltas, M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem. 2012, 52, 275-283.
https://doi.org/10.1016/j.ejmech.2012.03.029

[92]. Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Bioorg. amp; Med. Chem. Lett. 2011, 21 (24), 7273-7276.
https://doi.org/10.1016/j.bmcl.2011.10.048

[93]. Patpi, S. R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; T, A. D.; Kalivendi, S. V.; Kantevari, S. Design, Synthesis, and Structure-Activity Correlations of Novel Dibenzo[b,d]furan, Dibenzo[b,d]thiophene, and N-Methylcarbazole Clubbed 1,2,3-Triazoles as Potent Inhibitors of Mycobacterium tuberculosis. J. Med. Chem. 2012, 55 (8), 3911-3922.
https://doi.org/10.1021/jm300125e

[94]. Pulipati, L.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Click-based synthesis and antitubercular evaluation of novel dibenzo[ b , d ]thiophene-1,2,3-triazoles with piperidine, piperazine, morpholine and thiomorpholine appendages. Bioorg. Med. Chem. Lett. 2016, 26 (11), 2649-2654.
https://doi.org/10.1016/j.bmcl.2016.04.015

[95]. Shaikh, M. H.; Subhedar, D. D.; Nawale, L.; Sarkar, D.; Kalam Khan, F. A.; Sangshetti, J. N.; Shingate, B. B. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. Med. Chem. Commun. 2015, 6 (6), 1104-1116.
https://doi.org/10.1039/C5MD00057B

[96]. Alghamdi, W. A.; Al-Shaer, M. H.; An, G.; Alsultan, A.; Kipiani, M.; Barbakadze, K.; Mikiashvili, L.; Ashkin, D.; Griffith, D. E.; Cegielski, J. P.; Kempker, R. R.; Peloquin, C. A. Population Pharmacokinetics of Linezolid in Tuberculosis Patients: Dosing Regimen Simulation and Target Attainment Analysis. Antimicrob. Agents Chemother. 2020, 64 (10).
https://doi.org/10.1128/AAC.01174-20

[97]. Bhattarai, D.; Lee, S. H.; Seo, S. H.; Nam, G.; Kang, S. B.; Pae, A. N.; Kim, E. E.; Oh, T.; Cho, S.; Keum, G. Synthesis and In Vitro Antibacterial Activity of Novel 3‐Azabicyclo[3.3.0]octanyl Oxazolidinones. Chem. Biol. Drug. Des. 2012, 80 (3), 388-397.
https://doi.org/10.1111/j.1747-0285.2012.01404.x

[98]. Kamal, A.; Swapna, P.; Shetti, R. V.; Shaik, A. B.; Narasimha Rao, M.; Sultana, F.; Khan, I. A.; Sharma, S.; Kalia, N. P.; Kumar, S.; Chandrakant, B. Anti-tubercular agents. Part 7: A new class of diarylpyrrole-oxazolidinone conjugates as antimycobacterial agents. Eur. J. Med. Chem. 2013, 64, 239-251.
https://doi.org/10.1016/j.ejmech.2013.03.027

[99]. Kaushik, C.; Kumar, K.; Singh, S.; Singh, D.; Saini, S. Synthesis and antimicrobial evaluation of 1,4-disubstituted 1,2,3-triazoles with aromatic ester functionality. Arab. J. Chem. 2016, 9 (6), 865-871.
https://doi.org/10.1016/j.arabjc.2013.09.023

[100]. Ghiano, D. G.; de la Iglesia, A.; Liu, N.; Tonge, P. J.; Morbidoni, H. R.; Labadie, G. R. Antitubercular activity of 1,2,3-triazolyl fatty acid derivatives. Eur. J. Med. Chem. 2017, 125, 842-852.
https://doi.org/10.1016/j.ejmech.2016.09.086

[101]. Goud, G. L.; Ramesh, S.; Ashok, D.; Reddy, V. P.; Yogeeswari, P.; Sriram, D.; Saikrishna, B.; Manga, V. Design, synthesis, molecular-docking and antimycobacterial evaluation of some novel 1,2,3-triazolyl xanthenones. Med. Chem. Commun. 2017, 8 (3), 559-570.
https://doi.org/10.1039/C6MD00593D

[102]. Danne, A. B.; Choudhari, A. S.; Chakraborty, S.; Sarkar, D.; Khedkar, V. M.; Shingate, B. B. Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. Med. Chem. Commun. 2018, 9 (7), 1114-1130.
https://doi.org/10.1039/C8MD00055G

Supporting Agencies

Science and Technology Development Fund FDCT grants of Macau University of Science and Technology to PC (Project Code: 0005 2023-RIA1)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).