European Journal of Chemistry

An efficient synthesis, anticancer and antimycobacterial activities of new substituted pyridine based azomethine derivatives

Crossmark


Main Article Content

Sanjay Shriramrao Kotalwar
Rajendra Prahlad Phase
Amol Diliprao Kale
Gautam Prabhakar Sadawarte
Vasant Bhagwan Jagrut

Abstract

Pyridine, a fundamental heterocyclic scaffold, is a key structural component in numerous biologically active molecules, including alkaloids, vitamins B3 and B6, coenzymes, and other natural products. Its significance in medicinal chemistry arises from its versatile physicochemical properties, such as its capacity to form hydrogen bonds, its high water solubility, and its chemical stability. In this study, a series of substituted pyridine-based analogues (3a-h) were synthesized and their structural elucidation was performed using various spectroscopic techniques. These derivatives incorporate an azomethine functionality within the pyridine core. The structural characterization of the newly synthesized compounds was achieved through spectroscopic analyses, including mass spectrometry, 1H NMR, 13C NMR, infrared (IR) spectroscopy, and complementary analytical methods such as solubility and melting point determination. The biological evaluation of the derivatives 3a-h was carried out to assess their in vitro cytotoxic activity against the human colon cancer cell line HCT-15 and the breast cancer cell line MCF-7 using the sulforhodamine B (SRB) assay. The results indicated that the synthesized compounds exhibited an anticancer activity ranging from moderate to promising. Furthermore, the compounds were subjected to preliminary antituberculosis (anti-TB) screening against Mycobacterium bovis, a representative strain of Mycobacterium tuberculosis, at varying concentrations.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Kotalwar, S. S.; Phase, R. P.; Kale, A. D.; Sadawarte, G. P.; Jagrut , V. B. An Efficient Synthesis, Anticancer and Antimycobacterial Activities of New Substituted Pyridine Based Azomethine Derivatives. Eur. J. Chem. 2025, 16, 129-135.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Rusu, A.; Moga, I.; Uncu, L.; Hancu, G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023, 15 (11), 2554.
https://doi.org/10.3390/pharmaceutics15112554

[2]. Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022, 4, 100606.
https://doi.org/10.1016/j.rechem.2022.100606

[3]. Sadawarte, G.; Jagatap, S.; Patil, M.; Jagrut, V.; Rajput, J. D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent. Eur. J. Chem. 2021, 12 (3), 279-283.
https://doi.org/10.5155/eurjchem.12.3.279-283.2118

[4]. Negishi, E.; Copéret, C.; Ma, S.; Liou, S.; Liu, F. Cyclic Carbopalladation. A Versatile Synthetic Methodology for the Construction of Cyclic Organic Compounds. Chem. Rev. 1996, 96 (1), 365-394.
https://doi.org/10.1021/cr950020x

[5]. Sadawarte, G. P.; Rajput, J. D.; Kale, A. D.; Jagrut, V. B. Synthesis and Biological Evaluation of Five- and Six-Membered Heterocycles as an Anti-Diabetic Agent: An Overview. J. Chem. Rev. 2024, 6(3), 331-352.

https://www.jchemrev.com/article_197127.html

[6]. de Meijere, A.; Kozhushkov, S. I.; Schill, H. Three-Membered-Ring-Based Molecular Architectures. Chem. Rev. 2006, 106 (12), 4926-4996.
https://doi.org/10.1021/cr0505369

[7]. Kumar, N.; Goel, N. Heterocyclic Compounds: Importance in Anticancer Drug Discovery. ACAMC. 2022, 22 (19), 3196-3207.
https://doi.org/10.2174/1871520622666220404082648

[8]. Hossain, M.; Habib, I.; Singha, K.; Kumar, A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024, 10 (1), e23172.
https://doi.org/10.1016/j.heliyon.2023.e23172

[9]. Lee, M. M.; Chan, B. D.; Wong, W.; Leung, T.; Qu, Z.; Huang, J.; Zhu, L.; Lee, C.; Chen, S.; Tai, W. C. Synthesis and Evaluation of Novel Anticancer Compounds Derived from the Natural Product Brevilin A. ACS Omega 2020, 5 (24), 14586-14596.
https://doi.org/10.1021/acsomega.0c01276

[10]. Dogra, A.; Kumar, J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front. Pharmacol. 2023, 14, 1136779.
https://doi.org/10.3389/fphar.2023.1136779

[11]. Singh, R. K. Key heterocyclic cores for smart anticancer drug-design part I; Bentham Science, 2022.
https://doi.org/10.2174/97898150400741220101

[12]. Perdicaris, S.; Vlachogianni, T.; Valavanidis, A. Bioactive natural substances from marine sponges: New developments and prospects for future pharmaceuticals. Nat. Prod. Chem. Res. 2013, 1, 2329-6836.
https://doi.org/10.4172/2329-6836.1000114

[13]. Zhang, L.; Peng, X.; Damu, G. L.; Geng, R.; Zhou, C. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Med. Res. Rev. 2013, 34 (2), 340-437.
https://doi.org/10.1002/med.21290

[14]. Perkins, H. Vancomycin and related antibiotics. Pharmacol. Ther. 1982, 16 (2), 181-197.
https://doi.org/10.1016/0163-7258(82)90053-5

[15]. Okaiyeto, S. A.; Sutar, P. P.; Chen, C.; Ni, J.; Wang, J.; Mujumdar, A. S.; Zhang, J.; Xu, M.; Fang, X.; Zhang, C.; Xiao, H. Antibiotic resistant bacteria in food systems: Current status, resistance mechanisms, and mitigation strategies. Agric. Commun. 2024, 2 (1), 100027.
https://doi.org/10.1016/j.agrcom.2024.100027

[16]. Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10 (4), 369-378.
https://doi.org/10.1016/j.jiph.2016.08.007

[17]. Malak, S. A.; Rajput, J. D.; Sharif, M. Design, synthesis, spectral analysis, and biological evaluation of Schiff bases with a 1,3,4-thiadiazole moiety as an effective inhibitor against bacterial and fungal strains. Eur. J. Chem. 2023, 14 (4), 466-472.
https://doi.org/10.5155/eurjchem.14.4.466-472.2468

[18]. Sadawarte, G. P.; Rajput, J. D.; Kale, A. D.; Phase, R. P.; Jagrut, V. B. Synthesis, characterization, and biological activities of substituted pyridine-based azomethine scaffolds. Eur. J. Chem. 2024, 15 (3), 226-231.
https://doi.org/10.5155/eurjchem.15.3.226-231.2532

[19]. Raslan, R. R.; Ammar, Y. A.; Fouad, S. A.; Hessein, S. A.; Shmiess, N. A.; Ragab, A. Evaluation of the anti-proliferative activity of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives as a new class of EGFRWtand VEGFR-2 inhibitors with apoptotic inducers. RSC. Adv. 2023, 13 (15), 10440-10458.
https://doi.org/10.1039/D3RA00887H

[20]. Sahu, D.; Sreekanth, P. R.; Behera, P. K.; Pradhan, M. K.; Patnaik, A.; Salunkhe, S.; Cep, R. Advances in synthesis, medicinal properties and biomedical applications of pyridine derivatives: A comprehensive review. Eur. J. Med. Chem. Rep. 2024, 12, 100210.
https://doi.org/10.1016/j.ejmcr.2024.100210

[21]. Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1 (3), 1112-1116.
https://doi.org/10.1038/nprot.2006.179

[22]. Sadawarte, G. P.; Halikar, N. K.; Kale, A. D.; Jagrut, V. B. Sodium Oxalate Mediate Synthesis and α-Amalyase Inhibition Assay of 5-Substituted-3-Phenyl-2-Thioxoimidazolidin-4-Ones. Polycycl. Aromat. Compd. 2023, 44 (1), 521-527.
https://doi.org/10.1080/10406638.2023.2177681

[23]. Rajini, A.; Nookaraju, M.; Reddy, I.; Venkatathri, N. Synthesis, characterization, antimicrobial and cytotoxicity studies of a novel titanium dodecylamino phosphate. J. Saudi Chem. Soc. 2017, 21, S77-S85.
https://doi.org/10.1016/j.jscs.2013.10.005

[24]. Shaikh, A. L.; Shinde, A.; Chavan, A.; Patil, R.; Bobade, V.; Mhaske, P. C. Synthesis of new 3-(4-methyl-2-arylthiazol-5-yl)-5-aryl-1,2,4-oxadiazole derivatives as potential cytotoxic and antimicrobial agents. Eur. J. Med. Chem. Rep. 2022, 6, 100092.
https://doi.org/10.1016/j.ejmcr.2022.100092

[25]. Fricker, S. The application of sulforhodamine B as a colorimetric endpoint in a cytotoxicity assay. Toxicol. Vitro 1994, 8 (4), 821-822.
https://doi.org/10.1016/0887-2333(94)90076-0

[26]. Ramos, D. F.; Leitão, G. G.; Costa, F. d.; Abreu, L.; Villarreal, J. V.; Leitão, S. G.; Said y Fernández, S. L.; Silva, P. E. Investigation of the antimycobacterial activity of 36 plant extracts from the brazilian Atlantic Forest. Rev. Bras. Cienc. Farm. 2008, 44 (4), 669-674.
https://doi.org/10.1590/S1516-93322008000400013

[27]. Palomino, J.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002, 46 (8), 2720-2722.
https://doi.org/10.1128/AAC.46.8.2720-2722.2002

[28]. Pavan, F. R.; Sato, D. N.; Higuchi, C. T.; Santos, A. C.; Vilegas, W.; Leite, C. Q. In vitro anti-Mycobacterium tuberculosis activity of some Brazilian "Cerrado" plants. Rev. bras. farmacogn. 2009, 19 (1b), 204-206.
https://doi.org/10.1590/S0102-695X2009000200004

[29]. Flournoy, D.; Twilley, J. Modified Middlebrook 7H9 broth for the rapid detection of mycobacteria. Clin. Lab. Sci. 2001, 14, 85-88.

[30]. Duan, C.; Yu, M.; Xu, J.; Li, B.; Zhao, Y.; Kankala, R. K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023, 162, 114643.
https://doi.org/10.1016/j.biopha.2023.114643

[31]. Tsacheva, I.; Todorova, Z.; Momekova, D.; Momekov, G.; Koseva, N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals 2023, 16 (7), 938.
https://doi.org/10.3390/ph16070938

[32]. Rajput, J. D.; Bagul, S. D.; Hosamani, A. A.; Patil, M. M.; Bendre, R. S. Synthesis, characterizations, biological activities and docking studies of novel dihydroxy derivatives of natural phenolic monoterpenoids containing azomethine linkage. Res. Chem. Intermed. 2017, 43 (10), 5377-5393.
https://doi.org/10.1007/s11164-017-2933-4

[33]. Bathula, R.; Mondal, P.; Raparla, R.; Satla, S. R. Evaluation of antitumor potential of synthesized novel 2-substituted 4-anilinoquinazolines as quinazoline-pyrrole hybrids in MCF-7 human breast cancer cell line and A-549 human lung adenocarcinoma cell lines. Futur. J. Pharm. Sci. 2020, 6 (1).
https://doi.org/10.1186/s43094-020-00059-5

[34]. Faraj, F. L.; Zahedifard, M.; Paydar, M.; Looi, C. Y.; Abdul Majid, N.; Ali, H. M.; Ahmad, N.; Gwaram, N. S.; Abdulla, M. A. Synthesis, Characterization, and Anticancer Activity of New Quinazoline Derivatives against MCF-7 Cells. Sci. World J. 2014, 2014, 1-15.
https://doi.org/10.1155/2014/212096

[35]. Samanta, S.; Kumar, S.; Aratikatla, E. K.; Ghorpade, S. R.; Singh, V. Recent developments of imidazo[1,2-a]pyridine analogues as antituberculosis agents. RSC. Med. Chem. 2023, 14 (4), 644-657.
https://doi.org/10.1039/D3MD00019B

[36]. Chaudhari, K. S.; Patel, H. M.; Surana, S. J. Pyridines: Multidrug-resistant tuberculosis (MDR-TB) inhibitors. Indian J. Tuberc. 2017, 64 (2), 119-128.
https://doi.org/10.1016/j.ijtb.2016.11.012

[37]. Quan, D. H.; Nagalingam, G.; Luck, I.; Proschogo, N.; Pillalamarri, V.; Addlagatta, A.; Martinez, E.; Sintchenko, V.; Rutledge, P. J.; Triccas, J. A. Bengamides display potent activity against drug-resistant Mycobacterium tuberculosis. Sci. Rep. 2019, 9 (1), 14396.
https://doi.org/10.1038/s41598-019-50748-2

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).