European Journal of Chemistry

Utilization of mistletoe for the synthesis of copper nanoparticles and its clinical applications

Crossmark


Main Article Content

Ebru Coteli

Abstract

Nanoparticles are substances with dimensions smaller than 100 nm. Nowadays, nanoparticles can be synthesized by many methods. Copper nanoparticles (CuNPs) were made using the green synthesis approach, using aqueous extracts of the pine mistletoe plant (Viscum album ssp. austriacum) and CuSO₄ metal salt. The formation of CuNPs was determined both by observing the color change and by the UV-vis method. Especially peaks were observed around the leaf (567 nm), fruit (560 nm), and branch (565 nm). Specific functional groups involved in the formation of CuNPs and the reduction of Cu0 were determined by FT-IR spectroscopy. In addition, SEM and EDS analyses of the synthesized CuNPs show that they are nanosized and their average size is less than 100 nm. In particular, it was determined that the size of fruit-derived CuNPs was the smallest (between 23.21 and 54.63 nm), and all synthesized CuNPs were spherical in shape. In addition, the antioxidant capacities of these plant extracts and CuNPs synthesized from them were investigated. For this purpose, DPPH and ABTS•+ radical scavenging activities of the samples were determined. The DPPH radical IC50 value of CuNPs obtained from the aqueous extract of fruit was determined as 151.41 µg/mL, and the ABTS•+ radical IC50 value was 160.43 µg/mL. The antioxidant results were compared with the standard ascorbic acid results. Furthermore, copper nanoparticles obtained from fruit extract were found to have the highest antioxidant activity. Furthermore, the antimicrobial activities of all samples were examined. In particular, the antiquorum activity of CuNPs synthesized from plant parts of V. album was determined for the first time. As a result, it was determined that the copper nanoparticles obtained from these plant parts had superior antioxidant and antimicrobial properties.


icon graph This Abstract was viewed 249 times | icon graph Article PDF downloaded 121 times

How to Cite
(1)
Coteli, E. Utilization of Mistletoe for the Synthesis of Copper Nanoparticles and Its Clinical Applications. Eur. J. Chem. 2025, 16, 53-63.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kato, H. Tracking nanoparticles inside cells. Nature Nanotech. 2011, 6 (3), 139-140.
https://doi.org/10.1038/nnano.2011.25

[2]. Metzler, D. M.; Erdem, A.; Tseng, Y. H.; Huang, C. P. Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type. J. Nanotechnol. 2012, 2012, 1-12.
https://doi.org/10.1155/2012/237284

[3]. Aitken, R. J.; Chaudhry, M. Q.; Boxall, A. B.; Hull, M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup. Med. 2006, 56 (5), 300-306.
https://doi.org/10.1093/occmed/kql051

[4]. Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346-356.
https://doi.org/10.1016/j.biotechadv.2013.01.003

[5]. Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC. Adv. 2015, 5 (14), 10782-10789.
https://doi.org/10.1039/C4RA12552E

[6]. Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7 (1), 17-28.
https://doi.org/10.1016/j.jare.2015.02.007

[7]. Mirzajani, F.; Ghassempour, A.; Aliahmadi, A.; Esmaeili, M. A. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol. 2011, 162 (5), 542-549.
https://doi.org/10.1016/j.resmic.2011.04.009

[8]. Yaşa, I.; Lkhagvajav, N.; Koizhaiganova, M.; Çelik, E.; Sarı, O. Assessment of antimicrobial activity of nanosized Ag doped TiO2 colloids. World J. Microbiol. Biotechnol. 2012, 28 (7), 2531-2539.
https://doi.org/10.1007/s11274-012-1061-y

[9]. Campbell, N. H.; Karim, N. H.; Parkinson, G. N.; Gunaratnam, M.; Petrucci, V.; Todd, A. K.; Vilar, R.; Neidle, S. Molecular Basis of Structure-Activity Relationships between Salphen Metal Complexes and Human Telomeric DNA Quadruplexes. J. Med. Chem. 2011, 55 (1), 209-222.
https://doi.org/10.1021/jm201140v

[10]. Liu, Z.; Wang, B.; Li, B.; Wang, Q.; Yang, Z.; Li, T.; Li, Y. Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases. Eur. J. Med. Chem. 2010, 45 (11), 5353-5361.
https://doi.org/10.1016/j.ejmech.2010.08.060

[11]. Ali, A.; Sepay, N.; Afzal, M.; Sepay, N.; Alarifi, A.; Shahid, M.; Ahmad, M. Molecular designing, crystal structure determination and in silico screening of copper(II) complexes bearing 8-hydroxyquinoline derivatives as anti-COVID-19. Bioorg. Chem. 2021, 110, 104772.
https://doi.org/10.1016/j.bioorg.2021.104772

[12]. Singh, N. K.; Kumbhar, A. A.; Pokharel, Y. R.; Yadav, P. N. Anticancer potency of copper(II) complexes of thiosemicarbazones. J. Inorg. Biochem. 2020, 210, 111134.
https://doi.org/10.1016/j.jinorgbio.2020.111134

[13]. Esteban-Cubillo, A.; Pecharromán, C.; Aguilar, E.; Santarén, J.; Moya, J. S. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J. Mater. Sci. 2006, 41 (16), 5208-5212.
https://doi.org/10.1007/s10853-006-0432-x

[14]. Mandacı, S. Mistletoes in agricultural and forest areas of Balıkesir province, their damages, protection and control methods, Master's Thesis 1998, Uludağ University, Bursa, Turkey.

[15]. Ekhaise, F.; Ofoezie, V.; Enobakhare, D. Antibacterial properties and preliminary phytochemical analysis of methanolic extract of mistletoe (Tapinanthus bangwensis). Bayero J. Pure App. Sci. 2011, 3 (2), 65-68.
https://doi.org/10.4314/bajopas.v3i2.63223

[16]. Bussing, A.; Azhari, T.; Ostendorp, H.; Lehnert, A.; Schweizer, K. Viscum album L. Extracts reduce sister chromatid exchanges in cultured peripheral blood mononuclear cells. Eur. J. Cancer 1994, 30 (12), 1836-1841.
https://doi.org/10.1016/0959-8049(94)00299-K

[17]. Kovacs, E. The in vitro effect of Viscum album (VA) extract on DNA repair of peripheral blood mononuclear cells (PBMC) in cancer patients. Phytother. Res. 2002, 16 (2), 143-147.
https://doi.org/10.1002/ptr.920

[18]. Chung, I.; Abdul Rahuman, A.; Marimuthu, S.; Vishnu Kirthi, A.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 2017, 14(1), 18-24.
https://doi.org/10.3892/etm.2017.4466

[19]. Wu, S.; Rajeshkumar, S.; Madasamy, M.; Mahendran, V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif. Cells Nanomed. Biotechnol. 2020, 48 (1), 1153-1158.
https://doi.org/10.1080/21691401.2020.1817053

[20]. Bindhu, M.; Umadevi, M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2013, 101, 184-190.
https://doi.org/10.1016/j.saa.2012.09.031

[21]. Zhang, B.; Yan, B. Analytical strategies for characterizing the surface chemistry of nanoparticles. Anal. Bioanal. Chem. 2009, 396 (3), 973-982.
https://doi.org/10.1007/s00216-009-2996-1

[22]. Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49-67.
https://doi.org/10.2147/NSA.S99986

[23]. Hodoroaba, V. Energy-dispersive X-ray spectroscopy (EDS). Charact. Nanoparticles 2020, 397-417.
https://doi.org/10.1016/B978-0-12-814182-3.00021-3

[24]. Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181 (4617), 1199-1200.
https://doi.org/10.1038/1811199a0

[25]. Deng, J.; Cheng, W.; Yang, G. A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chem. 2011, 125 (4), 1430-1435.
https://doi.org/10.1016/j.foodchem.2010.10.031

[26]. Scherer, R.; Godoy, H. T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112 (3), 654-658.
https://doi.org/10.1016/j.foodchem.2008.06.026

[27]. Rice-Evans, C. Screening of Phenolics and Flavonoids for Antioxidant Activity. Antioxid. Food Suppl. Hum. Health 1999, 239-253.
https://doi.org/10.1016/B978-012543590-1/50017-2

[28]. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. In CLSI document M07-Ed12 (12th ed.). Clinical and laboratory standards institute 2024.
https://clsi.org/standards/products/microbiology/documents/m07/

[29]. Shirisha, A.; Vijayakumar, A. Minimum Inhibitory Concentration (MIC) and Minimum Bacterial Concentration (MBC) Evaluation of Green Synthesised Silver Nanoparticles on Staphylococcus aureus and Streptococcus agalactiae. Int. J. Vet. Sci. Anim. Husbandry 2023, 8 (4), 244-249.
https://doi.org/10.22271/veterinary.2023.v8.i4d.604

[30]. McClean, K. H.; Winson, M. K.; Fish, L.; Taylor, A.; Chhabra, S. R.; Camara, M.; Daykin, M.; Lamb, J. H.; Swift, S.; Bycroft, B. W.; Stewart, G. S.; Williams, P. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997, 143 (12), 3703-3711.
https://doi.org/10.1099/00221287-143-12-3703

[31]. Zhao, Y.; Zhu, J.; Hong, J.; Bian, N.; Chen, H. Microwave‐Induced Polyol‐Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology. Eur. J. Inorg. Chem. 2004, 2004 (20), 4072-4080.
https://doi.org/10.1002/ejic.200400258

[32]. Dwivedi, C.; Pandey, I.; Pandey, H.; Ramteke, P. W.; Pandey, A. C.; Mishra, S. B.; Patil, S. Electrospun Nanofibrous Scaffold as a Potential Carrier of Antimicrobial Therapeutics for Diabetic Wound Healing and Tissue Regeneration. Nano-Microscale Drug Deliv. Syst. 2017, 147-164.
https://doi.org/10.1016/B978-0-323-52727-9.00009-1

[33]. Titus, D.; James Jebaseelan Samuel, E.; Roopan, S. M. Nanoparticle characterization techniques. Green Synth. Charact. Appl. Nanoparticles 2019, 303-319.
https://doi.org/10.1016/B978-0-08-102579-6.00012-5

[34]. Cengiz, M.; Baytar, O.; Şahin, O.; Kutlu, H. M.; Ayhanci, A.; Vejselova Sezer, C.; Gür, B. Biogenic Synthesized Bare and Boron-Doped Copper Oxide Nanoparticles from Thymbra spicat ssp. spicata: In Silico and In Vitro Studies. J. Clust. Sci. 2023, 35 (1), 265-284.
https://doi.org/10.1007/s10876-023-02481-0

[35]. Murthy, H. C.; Desalegn, T.; Kassa, M.; Abebe, B.; Assefa, T. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. J. Nanomater. 2020, 2020, 1-12.
https://doi.org/10.1155/2020/3924081

[36]. Olajire, A. A.; Ifediora, N. F.; Bello, M. D.; Benson, N. U. Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil. Iran J. Sci. Technol. Trans. Sci. 2017, 42 (4), 1935-1946.
https://doi.org/10.1007/s40995-017-0404-9

[37]. Alahdal, F. A.; Qashqoosh, M. T.; Manea, Y. K.; Mohammed, R. K.; Naqvi, S. Green synthesis and characterization of copper nanoparticles using Phragmanthera austroarabica extract and their biological/ environmental applications. Sustain. Mater. Technol. 2023, 35, e00540.
https://doi.org/10.1016/j.susmat.2022.e00540

[38]. Sadik, O. A.; Du, N.; Kariuki, V.; Okello, V.; Bushlyar, V. Current and Emerging Technologies for the Characterization of Nanomaterials. ACS. Sustainable Chem. Eng. 2014, 2 (7), 1707-1716.
https://doi.org/10.1021/sc500175v

[39]. Mayeen, A.; Shaji, L. K.; Nair, A. K.; Kalarikkal, N. Morphological Characterization of Nanomaterials. Charact. Nanomater. 2018, 335-364.
https://doi.org/10.1016/B978-0-08-101973-3.00012-2

[40]. Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S. R.; Chougule, M. B.; Tekade, R. K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery; Elsevier, 2019; pp. 369-400.
https://doi.org/10.1016/B978-0-12-817909-3.00010-8

[41]. Ebnesajjad, S. Surface and Material Characterization Techniques. Surf. Treat. Mater. Adhes. Bond. 2014, 39-75.
https://doi.org/10.1016/B978-0-323-26435-8.00004-6

[42]. Scimeca, M.; Bischetti, S.; Lamsira, H. K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem. 2018, 62 (1), 89-99.
https://doi.org/10.4081/ejh.2018.2841

[43]. Kedare, S. B.; Singh, R. P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48 (4), 412-422.
https://doi.org/10.1007/s13197-011-0251-1

[44]. Ozgen, M.; Reese, R. N.; Tulio, A. Z.; Scheerens, J. C.; Miller, A. R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54 (4), 1151-1157.
https://doi.org/10.1021/jf051960d

[45]. Frankel, E. N.; Meyer, A. S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80 (13), 1925-1941.
https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4

[46]. Maulana, I.; Fasya, D.; Ginting, B.; Efendi, R. Biosynthesis of copper nanoparticles using methanol extract of sugar-apple leaves (Anonnaceae squamosa), and its antioxidant activity. J. Phys.: Conf. Ser. 2022, 2193 (1), 012057.
https://doi.org/10.1088/1742-6596/2193/1/012057

[47]. Kaningini, A. G.; Motlhalamme, T.; More, G. K.; Mohale, K. C.; Maaza, M. Antimicrobial, antioxidant, and cytotoxic properties of biosynthesized copper oxide nanoparticles (CuO-NPs) using Athrixia phylicoides DC. Heliyon 2023, 9 (4), e15265.
https://doi.org/10.1016/j.heliyon.2023.e15265

[48]. Kirubakaran, D.; Selvam, K.; Dhaneeshram, M.; Shivakumar, M. S.; Rajkumar, M.; Shanmugarathinam, A. Biogenic synthesis of copper nanoparticle using Impatiens chinensis L: insights into antimicrobial, antioxidant and anticancer activity. J. Mol. Struct. 2024, 1317, 138991.
https://doi.org/10.1016/j.molstruc.2024.138991

[49]. Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77 (5), 1541-1547.
https://doi.org/10.1128/AEM.02766-10

[50]. Pena, M. M.; Koch, K. A.; Thiele, D. J. Dynamic Regulation of Copper Uptake and Detoxification Genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1998, 18 (5), 2514-2523.
https://doi.org/10.1128/MCB.18.5.2514

[51]. Halliwell, B.; Gutteridge, J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219 (1), 1-14.
https://doi.org/10.1042/bj2190001

[52]. Longano, D.; Ditaranto, N.; Sabbatini, L.; Torsi, L.; Cioffi, N. Synthesis and Antimicrobial Activity of Copper Nanomaterials. Nano-Antimicrob. 2011, 85-117.
https://doi.org/10.1007/978-3-642-24428-5_3

[53]. Belem-Kabre, W. L.; Ouedraogo, V.; Bayala, B.; Bance, A.; Ouedraogo, E.; Yaro, B.; Belemnaba, L.; Compaore, M.; Kiendrebeogo, M.; Ouedraogo, N. Anti-Biofilm, Anti-Quorum Sensing, and Anti-Proliferative Activities of Methanolic and Aqueous Roots Extracts of Carica papaya L. and Cocos nucifera L. Advances in Microbiology 2023, 13 (04), 165-180.
https://doi.org/10.4236/aim.2023.134010

[54]. Ouedraogo, V. Antioxidant, Antiquorum-Sensing and Antibiofilm Activities of Balanites aegyptiaca (L.) Del. (Balanitaceae) and Terminalia macroptera Guill. and Perr. (Combretaceae). Advances in Biochemistry 2018, 6 (4), 26-31.
https://doi.org/10.11648/j.ab.20180604.11

Supporting Agencies

Kirsehir Ahi Evran University Scientific Research Projects Coordination Unit. Project Number: SYO.A4.21.011.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).