European Journal of Chemistry

Theoretical insights into the structural, spectroscopic, solvent effect, reactivity, NCI, and NLO analyses of 5,7-dichloro-8-hydroxyquinoline-2-carbaldehyde

Crossmark


Main Article Content

Ceyhun Kucuk

Abstract

In this study, the characterization of the 5,7-dichloro-8-hydroxyquinoline-2-carbaldehyde molecule was carried out by nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and theoretical calculations in density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The integral equation formalism polarizable continuum (IEFPCM) solvation model was used for ethanol, dimethylsulfoxide (DMSO), and water solvents. The conformation of the molecule was analyzed, and the most stable structure was optimized, and the geometry and electronic structure of the optimized structure were examined. The chemical stability and charge transport inside the molecule were validated by the computed HOMO-LUMO band gap energies. Characteristics such as non-linear optic properties (NLO), charge analysis, and molecular electrostatic potential (MEP) aid in determining the electrophilic/nucleophilic nature. Compound intermolecular interactions were investigated by topological studies, including noncovalent interaction (NCI), reduced density gradient (RDG), electron localization function (ELF), and localized orbital locator (LOL). The natural bond order (NBO) analysis was used to examine the changes between the hyperconjugative interaction energy E(2) and the electron densities of the donor (i) and acceptor (j) bonds. The interaction energy, the NCI study, and the NBO analysis revealed that the ligand becomes stronger in the presence of a pyridine ring.


icon graph This Abstract was viewed 405 times | icon graph Article PDF downloaded 81 times

How to Cite
(1)
Kucuk, C. Theoretical Insights into the Structural, Spectroscopic, Solvent Effect, Reactivity, NCI, and NLO Analyses of 5,7-Dichloro-8-Hydroxyquinoline-2-Carbaldehyde. Eur. J. Chem. 2025, 16, 70-82.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Zhang, W.; He, X.; Deng, N.; Wang, Y.; He, J. Monitoring of intermediates of clioquinol electro-oxidation by thin-layer spectral and electrophoretic electrochemistry. Electrochim. Acta 2014, 127, 403-409.
https://doi.org/10.1016/j.electacta.2014.02.069

[2]. Rohde, W.; Mikelens, P.; Jackson, J.; Blackman, J.; Whitcher, J.; Levinson, W. Hydroxyquinolines Inhibit Ribonucleic Acid-Dependent Deoxyribonucleic Acid Polymerase and Inactivate Rous Sarcoma Virus and Herpes Simplex Virus. Antimicrob Agents Chemother 1976, 10 (2), 234-240.
https://doi.org/10.1128/AAC.10.2.234

[3]. Fischer, T.; Hartvig, P. Skin absortion of 8-hydroxyquinounes. Lancet 1977, 309 (8011), 603.
https://doi.org/10.1016/S0140-6736(77)92031-1

[4]. Gholz, L. M.; Arons, W. L. Prophylaxis and Therapy of Amebiasis and Shigellosis with Iodochlorhydroxyquin. Am. J. Trop. Med. Hyg. 1964, 13 (3), 396-401.
https://doi.org/10.4269/ajtmh.1964.13.396

[5]. Martínez‐Larrañaga, M. R.; Anadón, A.; Fernandez‐Cruz, M. L.; Díaz, M. J.; Martinez, M. A.; Frejo, M. T.; Martínez, M.; Tafur, M. Cytotoxicity in pig hepatocytes induced by 8‐quinolinol, chloramine‐T and natamycin. Vet. Pharm. & Therapeutics 2000, 23 (1), 37-44.
https://doi.org/10.1046/j.1365-2885.2000.00243.x

[6]. Sureshkumar, B.; Mary, Y. S.; Mary, Y. S.; Suma, S. Spectroscopic and DFT investigations of 8-hydroxy quinoline-5-sulfonic acid-5-chloro-8-hydroxyquinoline cocrystal. Chem. Pap. 2021, 75 (7), 3387-3399.
https://doi.org/10.1007/s11696-021-01579-x

[7]. Agwupuye, J. A.; Gber, T. E.; Edet, H. O.; Zeeshan, M.; Batool, S.; Duke, O. E.; Adah, P. O.; Odey, J. O.; Egbung, G. E. Molecular modeling, DFT studies and biological evaluation of methyl 2,8-dichloro-1,2-dihydroquinoline-3-carboxylate. Chem. Phys. Impact 2023, 6, 100146.
https://doi.org/10.1016/j.chphi.2022.100146

[8]. Chaturvedi, G.; Kaur, A.; Umar, A.; Khan, M. A.; Algarni, H.; Kansal, S. K. Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron based MOFs, MIL-100(Fe). J. Solid State Chem. 2020, 281, 121029.
https://doi.org/10.1016/j.jssc.2019.121029

[9]. Lgaz, H.; Salghi, R.; Subrahmanya Bhat, K.; Chaouiki, A.; Shubhalaxmi; Jodeh, S. Correlated experimental and theoretical study on inhibition behavior of novel quinoline derivatives for the corrosion of mild steel in hydrochloric acid solution. J. Mol. Liq. 2017, 244, 154-168.
https://doi.org/10.1016/j.molliq.2017.08.121

[10]. Lakshmi, A.; Balachandran, V.; Janaki, A. Comparative vibrational spectroscopic studies, HOMO-LUMO and NBO analysis of 5,7-dibromo-8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline based on Density Functional Theory. J. Mol. Struct. 2011, 1004 (1-3), 51-66.
https://doi.org/10.1016/j.molstruc.2011.07.022

[11]. Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio Jr, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J.; Besley, N. A.; Herbert, J. M.; Yeh Lin, C.; Van Voorhis, T.; Hung Chien, S.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Min Rhee, Y.; Ritchie, J.; Rosta, E.; David Sherrill, C.; Simmonett, A. C.; Subotnik, J. E.; Lee Woodcock III, H.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M.; Head-Gordon, M. Advances in methods and algorithms in a modern quantum chemistry program package. Phys, Chem, Chem, Phys, 2006, 8 (27), 3172-3191.
https://doi.org/10.1039/B517914A

[12]. GaussView, Version 5, Dennington, R.; Keith, T. A.; Millam, J. M. Semichem Inc., Shawnee Mission, KS, 2009.

[13]. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913

[14]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. . Gaussian 09, Gaussian, Inc., Wallingford CT, 2004.

[15]. Erdogdu, Y.; Başköse, Ü. C.; Sağlam, S. Conformational, structural, electronic, and vibrational investigations on 5-methyl-4-(2-thiazolylazo)resorcinol by FT-IR, FT-Raman, NMR, and DFT. Chem. Pap. 2019, 73 (8), 1879-1891.
https://doi.org/10.1007/s11696-019-00739-4

[16]. Kucuk, C.; Yurdakul, S.; Özdemir, N.; Erdem, B. Structural and spectroscopic characterization, electronic properties, and biological activity of the 4-(3-methoxyphenyl)piperazin-1-ium 4-(3-methoxy phenyl)piperazine-1-carboxylate monohydrate. Chem. Pap. 2023, 77 (5), 2793-2815.
https://doi.org/10.1007/s11696-023-02667-w

[17]. Subashini, K.; Periandy, S. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO) investigation and molecular docking study of (R)-2-Amino-1-PhenylEthanol. J. Mol. Struct. 2016, 1117, 240-256.
https://doi.org/10.1016/j.molstruc.2016.03.063

[18]. Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371 (6499), 683-686.
https://doi.org/10.1038/371683a0

[19]. Kucuk, C.; Celik, S.; Yurdakul, S.; Erdem, B. Spectroscopic characterization, DFT calculations, antimicrobial activity, and molecular docking studies of 5-methoxy-1H-benzo[d]imidazole and its Ag(I) complex. Polyhedron 2024, 251, 116868.
https://doi.org/10.1016/j.poly.2024.116868

[20]. Disli, A.; Yucesoy, E. E.; Erdogdu, Y.; Gulluoglu, M. T.; Ozturk, A.; Dilek, G. Synthesis, characterization, theoretical studies and antimicrobial activity of novel 1-(2 hydroxy-4-propoxy-3-propylphenyl)ethanones bearing thiotetrazole. J. Mol. Struct. 2021, 1242, 130818.
https://doi.org/10.1016/j.molstruc.2021.130818

[21]. Ravindranath, L.; Reddy, B. V. Theoretical and experimental study of torsional potentials, molecular structure (monomer and dimer), vibrational analysis and molecular characteristics of some dimethyl bipyridines. J. Mol. Struct. 2020, 1200, 127089.
https://doi.org/10.1016/j.molstruc.2019.127089

[22]. Ma, Z.; Moulton, B. 5-Chloro-8-hydroxyquinoline; Experimental Crystal Structure Determination. CCDC. 2010, 687619

https://doi.org/10.5517/ccr2j8l

[23]. Pieczka, A.; Ertl, A.; Gołębiowska, B.; Jeleń, P.; Kotowski, J.; Nejbert, K.; Stachowicz, M.; Giester, G. Crystal structure and Raman spectroscopic studies of OH stretching vibrations in Zn-rich fluor-elbaite. Am. Mineral. 2020, 105 (11), 1622-1630.
https://doi.org/10.2138/am-2020-7360

[24]. Sureshkumar, B.; Sheena Mary, Y.; Suma, S.; Armaković, S.; Armaković, S. J.; Alsenoy, C. V.; Narayana, B.; Sasidharan, B. P. Spectroscopic characterization of 8-hydroxy-5-nitroquinoline and 5-chloro-8-hydroxy quinoline and investigation of its reactive properties by DFT calculations and molecular dynamics simulations. J. Mol. Struct. 2018, 1164, 525-538.
https://doi.org/10.1016/j.molstruc.2018.03.088

[25]. Arivazhagan, R.; Sridevi, C.; Prakasam, A. Exploring molecular structure, spectral features, electronic properties and molecular docking of a novel biologically active heterocyclic compound 4-phenylthiosemicarbazide. J. Mol. Struct. 2021, 1232, 129956.
https://doi.org/10.1016/j.molstruc.2021.129956

[26]. Yurdakul, Ş.; Badoğlu, S.; Güleşci, Y. Experimental and theoretical study on free 5-nitroquinoline, 5-nitroisoquinoline, and their zinc(II) halide complexes. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 137, 945-956.
https://doi.org/10.1016/j.saa.2014.08.097

[27]. Ling, Y.; Huang, L.; Hong, W.; Liu, T.; Luan, J.; Liu, W.; Lai, J.; Li, H. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale 2018, 10 (41), 19517-19523.
https://doi.org/10.1039/C8NR03564D

[28]. Ulahannan, R.; Kannan, V.; Vidya, V.; Sreekumar, K. Synthesis and DFT studies of the structure - NLO activity evaluation of 2-(4-methoxy phenyl)-1,4,5-triphenyl-2,5-dihydro-1H-imidazole. J. Mol. Struct. 2020, 1199, 127004.
https://doi.org/10.1016/j.molstruc.2019.127004

[29]. Selvaraj, S.; Rajkumar, P.; Kesavan, M.; Gunasekaran, S.; Kumaresan, S. Experimental and theoretical investigations on spectroscopic properties of tropicamide. J. Mol. Struct. 2018, 1173, 52-62.
https://doi.org/10.1016/j.molstruc.2018.06.097

[30]. Yurdakul, Ş.; Tanrıbuyurdu, S. Theoretical and experimental study of solvent effects on the structure, vibrational spectra, and tautomerism of 3-amino-1,2,4-triazine. J. Mol. Struct. 2013, 1052, 57-66.
https://doi.org/10.1016/j.molstruc.2013.08.046

[31]. Hiremath, S. M.; Suvitha, A.; Patil, N. R.; Hiremath, C. S.; Khemalapure, S. S.; Pattanayak, S. K.; Negalurmath, V. S.; Obelannavar, K. Molecular structure, vibrational spectra, NMR, UV, NBO, NLO, HOMO-LUMO and molecular docking of 2-(4, 6-dimethyl-1-benzofuran-3-yl) acetic acid (2DBAA): Experimental and theoretical approach. J. Mol. Struct. 2018, 1171, 362-374.
https://doi.org/10.1016/j.molstruc.2018.05.109

[32]. Beatrice, M. L.; Delphine, S. M.; Amalanathan, M.; Mary, M. S.; Robert, H. M.; Mol, K. T. Molecular structure, spectroscopic, Fukui function, RDG, anti-microbial and molecular docking analysis of higher concentration star anise content compound methyl 4-methoxy benzoate-DFT study. J. Mol. Struct. 2021, 1238, 130381.
https://doi.org/10.1016/j.molstruc.2021.130381

[33]. Kucuk, C.; Celik, S.; Yurdakul, S.; Coteli, E. A new Ag(I)-complex of 5-chloroquinolin-8-ol ligand: Synthesis, spectroscopic characterization, and DFT investigations, in vitro antioxidant (DPPH and ABTS), α-glucosidase, α-amylase inhibitory activities with protein-binding analysis. J. Mol. Struct. 2025, 1325, 141285.
https://doi.org/10.1016/j.molstruc.2024.141285

[34]. Khodiev, M.; Holikulov, U.; Jumabaev, A.; ISSAOUI, N.; Nikolay Lvovich, L.; Al-Dossary, O. M.; Bousiakoug, L. G. Solvent effect on the self-association of the 1,2,4-triazole: A DFT study. J. Mol. Liq. 2023, 382, 121960.
https://doi.org/10.1016/j.molliq.2023.121960

[35]. Chen, R.; Li, Q.; Zhang, Z.; Xu, K.; Sun, L.; Ma, J.; Wang, T.; Mu, X.; Xi, Y.; Cao, L.; Teng, B.; Wu, H. Solvent effect on ESIPT process of N-(8-Quinolyl) salicylaldimine: A DFT/TD-DFT calculation. J. Photochem. Photobiol. A: Chem. 2023, 436, 114335.
https://doi.org/10.1016/j.jphotochem.2022.114335

[36]. Makhlouf, J.; Louis, H.; Benjamin, I.; Ukwenya, E.; Valkonen, A.; Smirani, W. Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex. J. Mol. Struct. 2023, 1272, 134223.
https://doi.org/10.1016/j.molstruc.2022.134223

[37]. Vincy, C. D.; Tarika, J. D.; Dexlin, X. D.; Rathika, A.; Beaula, T. J. Exploring the antibacterial activity of 1, 2 diaminoethane hexanedionic acid by spectroscopic, electronic, ELF, LOL, RDG analysis and molecular docking studies using DFT method. J. Mol. Struct. 2022, 1247, 131388.
https://doi.org/10.1016/j.molstruc.2021.131388

[38]. Celik, S.; Yurdakul, S.; Erdem, B. New silver(I) complex as antibiotic candidate: Synthesis, spectral characterization, DFT, QTAIM and antibacterial investigations and docking properties. J. Mol. Struct. 2022, 1261, 132902.
https://doi.org/10.1016/j.molstruc.2022.132902

[39]. Sakr, M. A.; Saad, M. A. Spectroscopic investigation, DFT, NBO and TD-DFT calculation for porphyrin (PP) and porphyrin-based materials (PPBMs). J. Mol. Struct. 2022, 1258, 132699.
https://doi.org/10.1016/j.molstruc.2022.132699

[40]. Mazumdar, P.; Choudhury, D. Study of the alkyl-π interaction between methane and few substituted pyrimidine systems using DFT, AIM and NBO calculations. Comput. Theor. Chem. 2022, 1208, 113560.
https://doi.org/10.1016/j.comptc.2021.113560

[41]. Medimagh, M.; Issaoui, N.; Gatfaoui, S.; Kazachenko, A. S.; Al-Dossary, O. M.; Kumar, N.; Marouani, H.; Bousiakoug, L. G. Investigations on the non-covalent interactions, drug-likeness, molecular docking and chemical properties of 1,1,4,7,7-pentamethyldiethylenetri ammonium trinitrate by density-functional theory. J. King Saud Univ. - Sci. 2023, 35 (4), 102645.
https://doi.org/10.1016/j.jksus.2023.102645

[42]. Kucuk, C.; Celik, S.; Yurdakul, S.; Cotelı, E.; Erdem, B. Synthesis, characterization, thermal, DFT study, antioxidant and antimicrobial in vitro investigations of indazole and its Ag(I) complex. Polyhedron 2023, 241, 116469.
https://doi.org/10.1016/j.poly.2023.116469

[43]. Uludağ, N.; Serdaroğlu, G. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure. J. Mol. Struct. 2018, 1155, 548-560.
https://doi.org/10.1016/j.molstruc.2017.11.032

[44]. Suhta, A.; Saral, S.; Çoruh, U.; Karakuş, S.; Vazquez-Lopez, E. M. Synthesis, Single Crystal X-Ray, Hirshfeld Surface Analysis and DFT Calculation Based NBO, HOMO-LUMO, MEP, ECT and Molecular Docking Analysis of N′-[(2,6-Dichlorophenyl)Methylidene]-2-{[3-(Trifluoromethyl)Phenyl]Amino}Benzohydrazide. J. Struct Chem 2024, 65 (1), 196-215.
https://doi.org/10.1134/S0022476624010189

[45]. Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Munawar, K. S.; Ashfaq, M.; Tahir, M. N. Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): Synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J. Mol. Struct. 2022, 1250, 131691.
https://doi.org/10.1016/j.molstruc.2021.131691

[46]. Kucuk, C. Synthesis, characterization, DFT studies, and molecular docking investigation of silver nitrate complex of 5-benzimidazole carboxylic acid as targeted anticancer agents. J. Mol. Struct. 2023, 1293, 136166.
https://doi.org/10.1016/j.molstruc.2023.136166

[47]. Celik, S.; Alp, M.; Yurdakul, S. A combined experimental and theoretical study on vibrational spectra of 3-pyridyl methyl ketone. Spectrosc. Lett. 2020, 53 (4), 234-248.
https://doi.org/10.1080/00387010.2020.1734840

[48]. Janani, S.; Rajagopal, H.; Muthu, S.; Aayisha, S.; Raja, M. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR), HOMO-LUMO, chemical reactivity, AIM, ELF, LOL and Molecular docking studies on 1-Benzyl-4-(N-Boc-amino)piperidine. J. Mol. Struct. 2021, 1230, 129657.
https://doi.org/10.1016/j.molstruc.2020.129657

[49]. Khemalapure, S. S.; Katti, V. S.; Hiremath, C. S.; Hiremath, S. M.; Basanagouda, M.; Radder, S. B. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Vis), ELF, LOL, NBO, and Fukui function investigations on (5-bromo-benzofuran-3-yl)-acetic acid hydrazide (5BBAH): Experimental and theoretical approach. J. Mol. Struct. 2019, 1196, 280-290.
https://doi.org/10.1016/j.molstruc.2019.06.078

[50]. Thirunavukkarasu, M.; Prabakaran, P.; Saral, A.; Alharbi, N. S.; Kadaikunnan, S.; Kazachenko, A. S.; Muthu, S. Molecular level solvent interaction (microscopic), electronic, covalent assembly (RDG, AIM & ELF), ADMET prediction and anti-cancer activity of 1-(4-Fluorophenyl)-1-propanone): Cytotoxic agent. J. Mol. Liq. 2023, 380, 121714.
https://doi.org/10.1016/j.molliq.2023.121714

[51]. Altürk, S.; Tamer, Ö.; Avcı, D.; Atalay, Y. Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn(II) complex. J. Organomet. Chem. 2015, 797, 110-119.
https://doi.org/10.1016/j.jorganchem.2015.08.014

[52]. Lescos, L.; Sitkiewicz, S. P.; Beaujean, P.; Blanchard-Desce, M.; Champagne, B.; Matito, E.; Castet, F. Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines. Phys. Chem. Chem. Phys. 2020, 22 (29), 16579-16594.
https://doi.org/10.1039/D0CP02992K

[53]. Zhang, R.; Du, B.; Sun, G.; Sun, Y. Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2010, 75 (3), 1115-1124.
https://doi.org/10.1016/j.saa.2009.12.067

[54]. Karamanis, P.; Pouchan, C.; Maroulis, G. Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electronab initioand density-functional-theory calculations. Phys. Rev. A. 2008, 77 (1),
https://doi.org/10.1103/PhysRevA.77.013201

[55]. Sethi, A.; Singh, R. P.; Shukla, D.; Singh, P. Synthesis of novel pregnane-diosgenin prodrugs via Ring A and Ring A connection: A combined experimental and theoretical studies. J. Mol. Struct. 2016, 1125, 616-623.
https://doi.org/10.1016/j.molstruc.2016.07.020

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).