European Journal of Chemistry

Exploring the miRNA-148b and the caspase-3/Bcl-2/Bax axis as a potential predictive marker in breast cancer

Crossmark


Main Article Content

Gamaleldin Ibrahim Harisa
Gamal Abd El-Hay Omran
Mohamed Noureldin
Ahmed Noreldin
Samiyah Alshehri
Sulthan Al Rashid
Tarek Mahmoud Okda

Abstract

Breast cancers (BCs) are the second leading cause of cancer-related deaths among women due to a lack of prediction, diagnosis, and follow-up. MicroRNAs (miRNAs) in liquid biopsies (LBs) are promising tools for the prediction and follow-up of cancer. This study aims to investigate and compare serum miRNA-148b, caspase-3, Bax, Bcl-2, and total antioxidant capacity (TAC) of BC patients with healthy controls. In this study, 300 women were included and divided into four groups of 75 each: Group 1 consisted of healthy controls, Group 2 of early-stage BC patients, Group 3 of chemotherapy-treated BC patients, and Group 4 of mastectomy-treated BC patients. Blood samples were collected for a complete blood count and serum samples were tested for miRNA-148b Bax, caspase-3, Bcl-2, and TAC. RT/PCR, ELISA and spectrophotometric methods were used to determine these parameters. In addition, histopathological examinations were performed on breast tissue samples. The present results indicated that BC patients exhibited elevated miRNA-148b, Bax, and Bcl-2 expressions compared to healthy controls. Importantly, advanced BC stages showed significantly higher miRNA-148b levels than early stages. However, levels of caspase-3 and TAC were reduced in BC patients compared to healthy controls. Histopathological analysis revealed various alterations in breast tissues, including nuclear changes, the presence of giant cells, and inflammation. The present study concluded that miRNA-148b and Bcl-2 are markedly elevated in the serum of BC patients compared to healthy subjects; however, Bax and caspase-3 levels were reduced. These findings underscore that blood miRNA-148b and caspase-3 are promising avenues for the prediction and follow-up of BC patients.


icon graph This Abstract was viewed 13 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Harisa, G. I.; Omran, G. A. E.-H.; Noureldin, M.; Noreldin, A.; Alshehri, S.; Al Rashid, S.; Okda, T. M. Exploring the MiRNA-148b and the Caspase-3 Bcl-2 Bax Axis As a Potential Predictive Marker in Breast Cancer. Eur. J. Chem. 2025, 16, 222-232.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Jørgensen, K. J.; Kalager, M.; Barratt, A.; Baines, C.; Zahl, P.; Brodersen, J.; Harris, R. P. Overview of guidelines on breast screening: Why recommendations differ and what to do about it. Breast 2017, 31, 261-269.
https://doi.org/10.1016/j.breast.2016.08.002

[2]. Sherif, A. Y.; Harisa, G. I.; Shahba, A. A.; Nasr, F. A.; Taha, E. I.; Alqahtani, A. S. Assembly of nanostructured lipid carriers loaded gefitinib and simvastatin as hybrid therapy for metastatic breast cancer: Codelivery and repurposing approach. Drug Dev. Res. 2023, 84, 1453-1467.
https://doi.org/10.1002/ddr.22097

[3]. Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer Statistics, 2021. CA. A. Cancer J. Clinicians 2021, 71 (1), 7-33.
https://doi.org/10.3322/caac.21654

[4]. Coughlin, S. S. Epidemiology of Breast Cancer in Women. Adv. Exp. Med. Biol. 2019, 9-29.
https://doi.org/10.1007/978-3-030-20301-6_2

[5]. Britt, K. L.; Cuzick, J.; Phillips, K. Key steps for effective breast cancer prevention. Nat. Rev. Cancer 2020, 20 (8), 417-436.
https://doi.org/10.1038/s41568-020-0266-x

[6]. Yeo, S. K.; Guan, J. Breast Cancer: Multiple Subtypes within a Tumor?. Trends Cancer 2017, 3 (11), 753-760.
https://doi.org/10.1016/j.trecan.2017.09.001

[7]. Zubair, M.; Wang, S.; Ali, N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front. Pharmacol. 2021, 11, 632079.
https://doi.org/10.3389/fphar.2020.632079

[8]. Shefer, A.; Yalovaya, A.; Tamkovich, S. Exosomes in Breast Cancer: Involvement in Tumor Dissemination and Prospects for Liquid Biopsy. IJMS. 2022, 23 (16), 8845.
https://doi.org/10.3390/ijms23168845

[9]. Skouras, P.; Markouli, M.; Kalamatianos, T.; Stranjalis, G.; Korkolopoulou, P.; Piperi, C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023, 11 (9), 2371.
https://doi.org/10.3390/biomedicines11092371

[10]. Irmer, B.; Chandrabalan, S.; Maas, L.; Bleckmann, A.; Menck, K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers 2023, 15 (4), 1307.
https://doi.org/10.3390/cancers15041307

[11]. Freitas, A. J.; Causin, R. L.; Varuzza, M. B.; Calfa, S.; Hidalgo Filho, C. M.; Komoto, T. T.; Souza, C. d.; Marques, M. M. Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. IJMS. 2022, 23 (17), 9952.
https://doi.org/10.3390/ijms23179952

[12]. Jafari, S. H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F.; Mokhtari, M.; Nahand, J. S.; Rahmati, M.; Mirzaei, H.; Kianmehr, M. Breast cancer diagnosis: Imaging techniques and biochemical markers. Journal Cellular Physiology 2018, 233 (7), 5200-5213.
https://doi.org/10.1002/jcp.26379

[13]. Alimirzaie, S.; Bagherzadeh, M.; Akbari, M. R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet. 2019, 95 (6), 643-660.
https://doi.org/10.1111/cge.13514

[14]. Wu, H.; Chu, P. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers 2022, 14 (9), 2052.
https://doi.org/10.3390/cancers14092052

[15]. Friedrich, M.; Pracht, K.; Mashreghi, M.; Jäck, H.; Radbruch, A.; Seliger, B. The role of the miR‐148/‐152 family in physiology and disease. Eur J. Immunol 2017, 47 (12), 2026-2038.
https://doi.org/10.1002/eji.201747132

[16]. Harisa, G. I.; Faris, T. M.; Sherif, A. Y.; Alzhrani, R. F.; Alanazi, S. A.; Kohaf, N. A.; Alanazi, F. K. Gene-editing technology, from macromolecule therapeutics to organ transplantation: Applications, limitations, and prospective uses. Int. J. Biol. Macromol. 2023, 253, 127055.
https://doi.org/10.1016/j.ijbiomac.2023.127055

[17]. Li, Y.; Deng, X.; Zeng, X.; Peng, X. The Role of Mir-148a in Cancer. J. Cancer 2016, 7 (10), 1233-1241.
https://doi.org/10.7150/jca.14616

[18]. Muñoz, J. P.; Pérez-Moreno, P.; Pérez, Y.; Calaf, G. M. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics 2023, 13 (19), 3072.
https://doi.org/10.3390/diagnostics13193072

[19]. Ghafouri-Fard, S.; Khanbabapour Sasi, A.; Abak, A.; Shoorei, H.; Khoshkar, A.; Taheri, M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front. Oncol. 2021, 11, 768949 https://doi.org/10.3389/fonc.2021.768949.
https://doi.org/10.3389/fonc.2021.768949

[20]. Ding, F.; Wu, H.; Han, X.; Jiang, X.; Xiao, Y.; Tu, Y.; Yu, M.; Lei, W.; Hu, S. The miR-148/152 family contributes to angiogenesis of human pluripotent stem cell- derived endothelial cells by inhibiting MEOX2. Mol. Ther. - Nucleic Acids 2023, 32, 582-593.
https://doi.org/10.1016/j.omtn.2023.04.020

[21]. Alba-Bernal, A.; Lavado-Valenzuela, R.; Domínguez-Recio, M. E.; Jiménez-Rodriguez, B.; Queipo-Ortuño, M. I.; Alba, E.; Comino-Méndez, I. Challenges and achievements of liquid biopsy technologies employed in early breast cancer. eBioMedicine 2020, 62, 103100.
https://doi.org/10.1016/j.ebiom.2020.103100

[22]. Ryu, I. S.; Kim, D. H.; Ro, J.-Y.; Park, B.-G.; Kim, S. H.; Im, J.-Y.; Lee, J.-Y.; Yoon, S. J.; Kang, H.; Iwatsubo, T.; Teunissen, C. E.; Cho, H.-J.; Ryu, J.-H. The microRNA-485-3p concentration in salivary exosome-enriched extracellular vesicles is related to amyloid β deposition in the brain of patients with Alzheimer's disease. Clin. Biochem. 2023, 118, 110603.
https://doi.org/10.1016/j.clinbiochem.2023.110603

[23]. Bidarra, D.; Constâncio, V.; Barros-Silva, D.; Ramalho-Carvalho, J.; Moreira-Barbosa, C.; Antunes, L.; Maurício, J.; Oliveira, J.; Henrique, R.; Jerónimo, C. Circulating MicroRNAs as Biomarkers for Prostate Cancer Detection and Metastasis Development Prediction. Front. Oncol. 2019, 9, 900.
https://doi.org/10.3389/fonc.2019.00900

[24]. Kaloni, D.; Diepstraten, S. T.; Strasser, A.; Kelly, G. L. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2022, 28 (1-2), 20-38.
https://doi.org/10.1007/s10495-022-01780-7

[25]. Bagherian, T.; Tackallou, S. H.; Mohammadgholi, A. Quantitative measurement of Bax and Bcl2 genes and protein expression in MCF7 cell-line when treated by Aloe Vera extract. Gene Rep. 2021, 23, 101123.
https://doi.org/10.1016/j.genrep.2021.101123

[26]. Avrutsky, M. I.; Troy, C. M. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front. Pharmacol. 2021, 12, 701301.
https://doi.org/10.3389/fphar.2021.701301

[27]. Ozawa, P. M.; Jucoski, T. S.; Vieira, E.; Carvalho, T. M.; Malheiros, D.; Ribeiro, E. M. Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl. Res. 2020, 223, 40-60.
https://doi.org/10.1016/j.trsl.2020.04.002

[28]. Andre, F.; Ismaila, N.; Allison, K. H.; Barlow, W. E.; Collyar, D. E.; Damodaran, S.; Henry, N. L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N. M.; Litvak, A.; Mayer, E. L.; Pusztai, L.; Raab, R.; Wolff, A. C.; Stearns, V. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. JCO. 2022, 40 (16), 1816-1837.
https://doi.org/10.1200/JCO.22.00069

[29]. Sriram, H.; Deshpande, N.; Tembhare, P. R.; Hasan, S.; Gujral, S.; Subramanian, P. G.; Patkar, N. V.; Rajpal, S.; Chatterjee, G.; Ghogale, S.; Tyagi, P.; Kedia, S.; Khanka, T. Improved protocol for plasma microRNA extraction and comparison of commercial kits. Biochem. Med. (Online) 2021, 31 (3), 467-475.
https://doi.org/10.11613/BM.2021.030705

[30]. Schmittgen, T. D. Real-Time Quantitative PCR. Methods 2001, 25 (4), 383-385.
https://doi.org/10.1006/meth.2001.1260

[31]. Xia, J.; Jiang, N.; Li, Y.; Wei, Y.; Zhang, X. The long noncoding RNA THRIL knockdown protects hypoxia-induced injuries of H9C2 cells through regulating miR-99a. Cardiol J. 2019, 26 (5), 564-574.
https://doi.org/10.5603/CJ.a2018.0054

[32]. Hahn, H. P.; Bundock, E. A.; Hornick, J. L. Immunohistochemical Staining for Claudin-1 Can Help Distinguish Meningiomas From Histologic Mimics. Am. J. Clin. Pathol. 2006, 125 (2), 203-208.
https://doi.org/10.1309/G659FVVBMG7U4RPQ

[33]. Kinnel, B.; Singh, S. K.; Oprea-Ilies, G.; Singh, R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers 2023, 15 (4), 1320.
https://doi.org/10.3390/cancers15041320

[34]. Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenet 2019, 11 (1).
https://doi.org/10.1186/s13148-018-0587-8

[35]. Sharma, S.; Patnaik, P. K.; Aronov, S.; Kulshreshtha, R. ApoptomiRs of Breast Cancer: Basics to Clinics. Front. Genet. 2016, 7, 219910.
https://doi.org/10.3389/fgene.2016.00175

[36]. Dai, W.; He, J.; Zheng, L.; Bi, M.; Hu, F.; Chen, M.; Niu, H.; Yang, J.; Luo, Y.; Tang, W.; Sheng, M. miR-148b-3p, miR-190b, and miR-429 Regulate Cell Progression and Act as Potential Biomarkers for Breast Cancer. J. Breast Cancer 2019, 22 (2), 219.
https://doi.org/10.4048/jbc.2019.22.e19

[37]. Ruiz-Manriquez, L. M.; Villarreal-Garza, C.; Benavides-Aguilar, J. A.; Torres-Copado, A.; Isidoro-Sánchez, J.; Estrada-Meza, C.; Arvizu-Espinosa, M. G.; Paul, S.; Cuevas-Diaz Duran, R. Exploring the Potential Role of Circulating microRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. IJMS. 2023, 24 (12), 9984.
https://doi.org/10.3390/ijms24129984

[38]. Adam-Artigues, A.; Garrido-Cano, I.; Carbonell-Asins, J. A.; Lameirinhas, A.; Simón, S.; Ortega-Morillo, B.; Martínez, M. T.; Hernando, C.; Constâncio, V.; Burgues, O.; Bermejo, B.; Henrique, R.; Lluch, A.; Jerónimo, C.; Eroles, P.; Cejalvo, J. M. Identification of a Two-MicroRNA Signature in Plasma as a Novel Biomarker for Very Early Diagnosis of Breast Cancer. Cancers 2021, 13 (11), 2848.
https://doi.org/10.3390/cancers13112848

[39]. He, Y.; Deng, F.; Yang, S.; Wang, D.; Chen, X.; Zhong, S.; Zhao, J.; Tang, J. Exosomal microRNA: a Novel Biomarker for Breast Cancer. Biomark. Med. 2017, 12 (2), 177-188.
https://doi.org/10.2217/bmm-2017-0305

[40]. Zubor, P.; Kubatka, P.; Kajo, K.; Dankova, Z.; Polacek, H.; Bielik, T.; Kudela, E.; Samec, M.; Liskova, A.; Vlcakova, D.; Kulkovska, T.; Stastny, I.; Holubekova, V.; Bujnak, J.; Laucekova, Z.; Büsselberg, D.; Adamek, M.; Kuhn, W.; Danko, J.; Golubnitschaja, O. Why the Gold Standard Approach by Mammography Demands Extension by Multiomics? Application of Liquid Biopsy miRNA Profiles to Breast Cancer Disease Management. IJMS. 2019, 20 (12), 2878.
https://doi.org/10.3390/ijms20122878

[41]. Dorraki, N.; Ghale-Noie, Z. N.; Ahmadi, N. S.; Keyvani, V.; Bahadori, R. A.; Nejad, A. S.; Aschner, M.; Pourghadamyari, H.; Mollazadeh, S.; Mirzaei, H. MiRNA-148b and Its Role in Various Cancers. Epigenomics 2021, 13 (24), 1939-1960.
https://doi.org/10.2217/epi-2021-0155

[42]. Cuk, K.; Zucknick, M.; Heil, J.; Madhavan, D.; Schott, S.; Turchinovich, A.; Arlt, D.; Rath, M.; Sohn, C.; Benner, A.; Junkermann, H.; Schneeweiss, A.; Burwinkel, B. Circulating microRNAs in plasma as early detection markers for breast cancer. Intl. Journal of Cancer 2012, 132 (7), 1602-1612.
https://doi.org/10.1002/ijc.27799

[43]. Nassar, F. J.; El Sabban, M.; Zgheib, N. K.; Tfayli, A.; Boulos, F.; Jabbour, M.; Saghir, N. S.; Talhouk, R.; Bazarbachi, A.; Calin, G. A.; Nasr, R. miRNA as Potential Biomarkers of Breast Cancer in the Lebanese Population and in Young Women: A Pilot Study. PLoS ONE 2014, 9 (9), e107566.
https://doi.org/10.1371/journal.pone.0107566

[44]. Sun, R.; Guo, M.; Fan, X.; Meng, Q.; Yuan, D.; Yang, X.; Yan, K.; Deng, H. MicroRNA‐148b Inhibits the Malignant Biological Behavior of Melanoma by Reducing Sirtuin 7 Expression Levels. BioMed Res. Int. 2020, 2020 (1).
https://doi.org/10.1155/2020/9568976

[45]. Pluta, P.; Smolewski, P.; Pluta, A.; Cebula-Obrzut, B.; Wierzbowska, A.; Nejc, D.; Robak, T.; Kordek, R.; Gottwald, L.; Piekarski, J.; Jeziorski, A. Significance of Bax Expression in Breast Cancer Patients. Pol. J. Surg. 2011, 83 (10), 549-553.
https://doi.org/10.2478/v10035-011-0087-4

[46]. Kallel-Bayoudh, I.; Hassen, H. B.; Khabir, A.; Boujelbene, N.; Daoud, J.; Frikha, M.; Sallemi-Boudawara, T.; Aifa, S.; Rebaï, A. Bcl-2 expression and triple negative profile in breast carcinoma. Med. Oncol. 2010, 28 (S1), 55-61.
https://doi.org/10.1007/s12032-010-9694-x

[47]. Lee, K.; Im, S.; Oh, D.; Lee, S.; Chie, E. K.; Han, W.; Kim, D.; Kim, T.; Park, I. A.; Noh, D.; Heo, D. S.; Ha, S. W.; Bang, Y. Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer 2007, 7 (1).
https://doi.org/10.1186/1471-2407-7-63

[48]. Hata, A. N.; Engelman, J. A.; Faber, A. C. The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discov. 2015, 5 (5), 475-487.
https://doi.org/10.1158/2159-8290.CD-15-0011

[49]. Merino, D.; Lok, S. W.; Visvader, J. E.; Lindeman, G. J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 2015, 35 (15), 1877-1887.
https://doi.org/10.1038/onc.2015.287

[50]. Okda, T. M.; Atwa, G. M.; Eldehn, A. F.; Dahran, N.; Alsharif, K. F.; Elmahallawy, E. K. A Novel Role of Galectin-3 and Thyroglobulin in Prognosis and Differentiation of Different Stages of Thyroid Cancer and Elucidation of the Potential Contribution of Bcl-2, IL-8 and TNF-α. Biomedicines 2022, 10 (2), 352.
https://doi.org/10.3390/biomedicines10020352

[51]. Ke, H.; Wang, X.; Zhou, Z.; Ai, W.; Wu, Z.; Zhang, Y. Effect of weimaining on apoptosis and Caspase-3 expression in a breast cancer mouse model. J. Ethnopharmacol. 2021, 264, 113363.
https://doi.org/10.1016/j.jep.2020.113363

[52]. Devarajan, E.; Sahin, A. A.; Chen, J. S.; Krishnamurthy, R. R.; Aggarwal, N.; Brun, A.; Sapino, A.; Zhang, F.; Sharma, D.; Yang, X.; Tora, A. D.; Mehta, K. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 2002, 21 (57), 8843-8851.
https://doi.org/10.1038/sj.onc.1206044

[53]. Yang, X.; Zhong, D.; Qin, H.; Wu, P.; Wei, K.; Chen, G.; He, R.; Zhong, J. Caspase-3 over-expression is associated with poor overall survival and clinicopathological parameters in breast cancer: a meta-analysis of 3091 cases. Oncotarget 2017, 9 (9), 8629-8641.
https://doi.org/10.18632/oncotarget.23667

[54]. Danesh, H.; Ziamajidi, N.; Mesbah-Namin, S. A.; Nafisi, N.; Abbasalipourkabir, R. Association between Oxidative Stress Parameters and Hematological Indices in Breast Cancer Patients. Int. J. Breast Cancer 2022, 2022, 1-8.
https://doi.org/10.1155/2022/1459410

[55]. Abbasalizad Farhangi, M.; Vajdi, M. Dietary Total Antioxidant Capacity (TAC) Significantly Reduces the Risk of Site-Specific Cancers: An Updated Systematic Review and Meta-Analysis. Nutr. Cancer 2020, 73 (5), 721-739.
https://doi.org/10.1080/01635581.2020.1771385

[56]. Rashad, Y. A. Evaluation of Serum Levels of HER2, MMP-9, Nitric Oxide, and Total Antioxidant Capacity in Egyptian Breast Cancer Patients: Correlation with Clinico-Pathological Parameters. Sci. Pharm. 2014, 82 (1), 129-145.
https://doi.org/10.3797/scipharm.1306-18

[57]. Yang, M.; Kong, D.; Chen, J. Inhibition of miR‐148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/β‐catenin signaling pathway. Journal Cellular Physiology 2019, 234 (10), 17757-17766.
https://doi.org/10.1002/jcp.28401

[58]. Carneiro, G.; Radcenco, A. L.; Evaristo, J.; Monnerat, G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm. Mol. Biol. Clin. Investig. 2019, 38 (3), 20180045.
https://doi.org/10.1515/hmbci-2018-0045

[59]. Li, J.; Zhou, Y.; Li, Y.; Liu, Y. Nuclear Morphological Characteristics in Breast Cancer: Correlation with Hormone Receptor and Human Epidermal Growth Factor Receptor 2. Anal. Cell. Pathol. 2021, 2021, 1-10.
https://doi.org/10.1155/2021/3037993

[60]. Raza, U.; Sheikh, A.; Jamali, S. N.; Turab, M.; Zaidi, S. A.; Jawaid, H. Post-treatment Hematological Variations and the Role of Hemoglobin as a Predictor of Disease-free Survival in Stage 2 Breast Cancer Patients. Cureus 2020.
https://doi.org/10.7759/cureus.7259

[61]. Lee, C.; Tsai, C.; Yeh, D.; Lin, C.; Li, Y.; Tzeng, H. Hemoglobin level trajectories in the early treatment period are related with survival outcomes in patients with breast cancer. Oncotarget 2016, 8 (1), 1569-1579.
https://doi.org/10.18632/oncotarget.13679

[62]. Sharma, P.; Georgy, J. T.; Andrews, A. G.; John, A. O.; Joel, A.; Chacko, R. T.; Premkumar, P. S.; Singh, A. Anemia requiring transfusion in breast cancer patients on dose-dense chemotherapy: Prevalence, risk factors, cost and effect on disease outcome. Support Care Cancer 2022, 30 (6), 5519-5526.
https://doi.org/10.1007/s00520-022-06970-2

[63]. Akinbami, A.; Popoola, A.; Adediran, A.; Dosunmu, A.; Oshinaike, O.; Adebola, P.; Ajibola, S. Full blood count pattern of pre-chemotherapy breast cancer patients in Lagos, Nigeria. Caspian J. Intern. Med. 2013, 4, 574-579.

https://pubmed.ncbi.nlm.nih.gov/24009939/

[64]. Şahin, A. B.; Cubukcu, E.; Ocak, B.; Deligonul, A.; Oyucu Orhan, S.; Tolunay, S.; Gokgoz, M. S.; Cetintas, S.; Yarbas, G.; Senol, K.; Goktug, M. R.; Yanasma, Z. B.; Hasanzade, U.; Evrensel, T. Low pan-immune-inflammation-value predicts better chemotherapy response and survival in breast cancer patients treated with neoadjuvant chemotherapy. Sci Rep 2021, 11 (1), 14662.
https://doi.org/10.1038/s41598-021-94184-7

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).