European Journal of Chemistry

Computational insights into anti-Zika quinazoline compounds: Density functional theory analysis, spectral properties, and molecular dynamics simulations

Crossmark


Main Article Content

Akhilesh Kumar Rao
Umesh Yadava

Abstract

Zika disease, caused by the Zika virus (ZIKV), a mosquito-borne flavivirus, is a leading factor in the emergence and reemergence of serious illnesses. The compounds N-[4-((3-bromo-4-fluorophenyl)amino]-7-methoxyquinazolin-6-yl)-2-butynamide (1), N-[4-((4'-6-difluoro-[1,1'-biphenyl]-3-yl)amino)quinazolin-6-yl]-2-butynamide (2), and N-[4-((3-fluorophenyl) amino)-7-methoxyquinazolin-6-yl]but-2-ynamide (3) have been reported to exhibit anti-ZIKV activity. In this study, we performed geometry optimizations and structural analysis of these compounds using the B3LYP/6-31G** method. On the basis of the optimized geometries, the electronic properties, infrared (IR) assignments, and thermodynamic parameters were evaluated. The results indicate that these molecules maintain robust conformations in their core rings, with notable variations in the conformations of their side chains and functional groups. It was also observed that the rotational temperatures increase as the rotational constants decrease. The evaluated small HOMO-LUMO energy gaps and molecular electrostatic potential maps suggest high chemical reactivity, indicating ease of intramolecular charge transfer within the molecules. Infrared assignments for normal mode vibrations in the range of 400 to 3800 cm-1 were carried out successfully and compared for all three compounds. In addition, to study the structure function, the docking of these molecules along with the control molecule afatinib was performed with the methyltransferase enzyme of the Zika virus. The top-ranked docked complexes were subjected to a molecular dynamics simulation run of 200 ns duration. These theoretical calculations help us to understand how these compounds can interact with enzymes that are involved in the metabolic pathways of the Zika virus.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Rao, A. K.; Yadava, U. Computational Insights into Anti-Zika Quinazoline Compounds: Density Functional Theory Analysis, Spectral Properties, and Molecular Dynamics Simulations. Eur. J. Chem. 2025, 16, 207-221.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ledermann, J. P.; Guillaumot, L.; Yug, L.; Saweyog, S. C.; Tided, M.; Machieng, P.; Pretrick, M.; Marfel, M.; Griggs, A.; Bel, M.; Duffy, M. R.; Hancock, W. T.; Ho-Chen, T.; Powers, A. M. Aedes hensilli as a Potential Vector of Chikungunya and Zika Viruses. PLoS Negl Trop Dis 2014, 8 (10), e3188.
https://doi.org/10.1371/journal.pntd.0003188

[2]. Altaf Khan, M.; Farhan, M.; Islam, S.; Bonyah, E. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete amp; Contin. Dyn. Syst. - S 2019, 12 (3), 455-474.
https://doi.org/10.3934/dcdss.2019030

[3]. Newman, C.; Friedrich, T. C.; O'Connor, D. H. Macaque monkeys in Zika virus research: 1947-present. Curr. Opin. Virol. 2017, 25, 34-40.
https://doi.org/10.1016/j.coviro.2017.06.011

[4]. Charrel, R. N.; Leparc-Goffart, I.; Pas, S.; de Lamballerie, X.; Koopmans, M.; Reusken, C. Background review for diagnostic test development for Zika virus infection. Bull. World Health Organ. 2016, 94 (8), 574-584D.
https://doi.org/10.2471/BLT.16.171207

[5]. Singh, S.; Farr, D.; Kumar, A. Ocular Manifestations of Emerging Flaviviruses and the Blood-Retinal Barrier. Viruses 2018, 10 (10), 530.
https://doi.org/10.3390/v10100530

[6]. Balmaseda, A.; Stettler, K.; Medialdea-Carrera, R.; Collado, D.; Jin, X.; Zambrana, J. V.; Jaconi, S.; Cameroni, E.; Saborio, S.; Rovida, F.; Percivalle, E.; Ijaz, S.; Dicks, S.; Ushiro-Lumb, I.; Barzon, L.; Siqueira, P.; Brown, D. W.; Baldanti, F.; Tedder, R.; Zambon, M.; de Filippis, A. M.; Harris, E.; Corti, D. Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (31), 8384-8389.
https://doi.org/10.1073/pnas.1704984114

[7]. Saeed, P. A.; Shilpa, R.; Sujith, A. A water-mediated approach for the preparation of conductive poly(3,4-ethylenedioxythiophene)-decorated poly(methyl methacrylate) microcomposites. Mater. Adv. 2022, 3 (9), 3875-3884.
https://doi.org/10.1039/D2MA00027J

[8]. Tilak, R.; Ray, S.; Tilak, V.; Mukherji, S. Dengue, chikungunya … and the missing entity - Zika fever: A new emerging threat. Med. J. Armed Forces India 2016, 72 (2), 157-163.
https://doi.org/10.1016/j.mjafi.2016.02.017

[9]. Waafira, A.; Subbaram, K.; Faiz, R.; Un Naher, Z.; Manandhar, P. L.; Ali, S. Zika virus outbreak are on the rise in India: Clinical features, complications and prevention. New Microbes New Infect. 2024, 62, 101493.
https://doi.org/10.1016/j.nmni.2024.101493

[10]. Petersen, E.; Wilson, M. E.; Touch, S.; McCloskey, B.; Mwaba, P.; Bates, M.; Dar, O.; Mattes, F.; Kidd, M.; Ippolito, G.; Azhar, E. I.; Zumla, A. Rapid Spread of Zika Virus in The Americas - Implications for Public Health Preparedness for Mass Gatherings at the 2016 Brazil Olympic Games. Int. J. Infect. Dis. 2016, 44, 11-15.
https://doi.org/10.1016/j.ijid.2016.02.001

[11]. Noronha, L. d.; Zanluca, C.; Azevedo, M. L.; Luz, K. G.; Santos, C. N. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem. Inst. Oswaldo Cruz 2016, 111 (5), 287-293.
https://doi.org/10.1590/0074-02760160085

[12]. Jiang, X.; Loeb, J. C.; Manzanas, C.; Lednicky, J. A.; Fan, Z. H. Valve‐Enabled Sample Preparation and RNA Amplification in a Coffee Mug for Zika Virus Detection. Angew Chem Int Ed 2018, 57 (52), 17211-17214.
https://doi.org/10.1002/anie.201809993

[13]. Gupta, G.; Shah, Y.; Poudel, A.; Pun, R.; Pant, K.; Kshetri, R.; Pandey, K.; Pandey, B. Serological and Molecular Study of Dengue Viruses in Different Hospitals of Nepal. Nep J. Med Sci 2013, 2 (1), 20-25.
https://doi.org/10.3126/njms.v2i1.7646

[14]. Noorbakhsh, F.; Abdolmohammadi, K.; Fatahi, Y.; Dalili, H.; Rasoolinejad, M.; Rezaei, F.; Salehi-Vaziri, M.; Shafiei-Jandaghi, N. Z.; Gooshki, E. S.; Zaim, M.; Nicknam, M. H. Zika virus infection, basic and clinical aspects: A review article. Iran. J. Public Health 2019, 48, 20-31.
https://doi.org/10.18502/ijph.v48i1.779

[15]. Bharadwaj, S.; Rao, A. K.; Dwivedi, V. D.; Mishra, S. K.; Yadava, U. Structure-based screening and validation of bioactive compounds as Zika virus methyltransferase (MTase) inhibitors through first-principle density functional theory, classical molecular simulation and QM/MM affinity estimation. J. Biomol. Struct. Dyn. 2020, 39 (7), 2338-2351.
https://doi.org/10.1080/07391102.2020.1747545

[16]. Kurosaki, Y.; Martins, D. B.; Kimura, M.; Catena, A. d.; Borba, M. A.; Mattos, S. d.; Abe, H.; Yoshikawa, R.; de Lima Filho, J. L.; Yasuda, J. Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification. Sci Rep 2017, 7 (1), 13503.
https://doi.org/10.1038/s41598-017-13836-9

[17]. L'Huillier, A. G.; Lombos, E.; Tang, E.; Perusini, S.; Eshaghi, A.; Nagra, S.; Frantz, C.; Olsha, R.; Kristjanson, E.; Dimitrova, K.; Safronetz, D.; Drebot, M.; Gubbay, J. B. Evaluation of Altona Diagnostics RealStar Zika Virus Reverse Transcription-PCR Test Kit for Zika Virus PCR Testing. J. Clin Microbiol 2017, 55 (5), 1576-1584.
https://doi.org/10.1128/JCM.02153-16

[18]. Quanquin, N.; Wang, L.; Cheng, G. Potential for treatment and a Zika virus vaccine. Curr. Opin. Pediatr. 2017, 29 (1), 114-121.
https://doi.org/10.1097/MOP.0000000000000441

[19]. Yadava, U.; Gupta, D. K.; Roychoudhury, M. Theoretical investigations on molecular structure and IR frequencies of 4-n-nonyl-4′-cyanobiphenyl in light of experimental results. J. Mol. Liq. 2010, 156 (2-3), 187-190.
https://doi.org/10.1016/j.molliq.2010.06.002

[20]. Shukla, B. K.; Yadava, U.; Roychoudhury, M. Theoretical explorations on the molecular structure and IR frequencies of 3-phenyl-1-tosyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine in view of experimental results. J. Mol. Liq. 2015, 212, 325-330.
https://doi.org/10.1016/j.molliq.2015.09.021

[21]. Chattaraj, P. K.; Poddar, A. Molecular Reactivity in the Ground and Excited Electronic States through Density-Dependent Local and Global Reactivity Parameters. J. Phys. Chem. A. 1999, 103 (43), 8691-8699.
https://doi.org/10.1021/jp991214+

[22]. Yadava, U.; Gupta, H.; Roychoudhury, M. A comparison of crystallographic and DFT optimized geometries on two taxane diterpenoids and docking studies with phospholipase A2. Med Chem Res 2011, 21 (9), 2162-2168.
https://doi.org/10.1007/s00044-011-9724-z

[23]. Zakaria, M. K.; Carletti, T.; Marcello, A. Cellular Targets for the Treatment of Flavivirus Infections. Front. Cell. Infect. Microbiol. 2018, 8, 398.
https://doi.org/10.3389/fcimb.2018.00398

[24]. Chuang, F.; Liao, C.; Hu, M.; Chiu, Y.; Lee, A.; Huang, S.; Chiu, Y.; Tsai, P.; Su, B.; Chang, T.; Lin, C.; Shih, C.; Yen, L. Antiviral Activity of Compound L3 against Dengue and Zika Viruses In Vitro and In Vivo. International Journal of Molecular Sciences, IJMS. 2020, 21 (11), 4050.
https://doi.org/10.3390/ijms21114050

[25]. Tirado-Rives, J.; Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 2, 297-306.
https://doi.org/10.1021/ct700248k

[26]. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6‐31G* basis set for third‐row atoms. J. Comput Chem 2001, 22 (9), 976-984.
https://doi.org/10.1002/jcc.1058

[27]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

[28]. Yadava, U.; Singh, M.; Roychoudhury, M. Gas-phase conformational and intramolecular π-π interaction studies on some pyrazolo[3,4-d]pyrimidine derivatives. Comput. Theor. Chem. 2011, 977, 134-139.
https://doi.org/10.1016/j.comptc.2011.09.025

[29]. Bharadwaj, S.; Dubey, A.; Kamboj, N. K.; Sahoo, A. K.; Kang, S. G.; Yadava, U. Drug repurposing for ligand-induced rearrangement of Sirt2 active site-based inhibitors via molecular modeling and quantum mechanics calculations. Sci Rep 2021, 11 (1).
https://doi.org/10.1038/s41598-021-89627-0

[30]. Yadava, U.; Singh, M.; Roychoudhury, M. Pyrazolo[3,4-d]pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A 2 : insight from molecular docking studies. J. Biol Phys 2013, 39 (3), 419-438.
https://doi.org/10.1007/s10867-013-9299-7

[31]. Glide: Version 5.8 Schrödinger, LLC, New York (2012).

[32]. DESMOND Molecular Dynamics System, version 3.1, D. E. Shaw Research, New York, NY (2012).

[33]. Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E. Scalable algorithms for molecular dynamics simulations on commodity clusters. In ACM/IEEE SC 2006 Conference (SC'06); IEEE, 2006; pp. 43-43.
https://doi.org/10.1109/SC.2006.54

[34]. Yadava, U.; Yadav, V. K.; Yadav, R. K. Novel anti-tubulin agents from plant and marine origins: insight from a molecular modeling and dynamics study. RSC Adv. 2017, 7, 15917-15925.
https://doi.org/10.1039/C7RA00370F

[35]. Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105, 9954-9960.
https://doi.org/10.1021/jp003020w

[36]. Singh, A.; Yadav, R. K.; Shati, A.; Kamboj, N. K.; Hasssan, H.; Bharadwaj, S.; Rana, R.; Yadava, U. Understanding the self-assembly dynamics of A/T absent "four-way DNA junctions with sticky ends" at altered physiological conditions through molecular dynamics simulations. PLoS One 2023, 18, e0278755.
https://doi.org/10.1371/journal.pone.0278755

[37]. Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J. Chem. Phys. 1955, 23, 2338-2342.
https://doi.org/10.1063/1.1741876

[38]. Elshakre, M. E.; Noamaan, M. A.; Moustafa, H.; Butt, H. Density Functional Theory, chemical reactivity, pharmacological potential and molecular docking of dihydrothiouracil-indenopyridopyrimidines with human-DNA topoisomerase II. Int. J. Mol. Sci. 2020, 21, 1253.
https://doi.org/10.3390/ijms21041253

[39]. Yu, J.; Su, N. Q.; Yang, W. Describing chemical reactivity with frontier molecular orbitalets. JACS Au 2022, 2, 1383-1394.
https://doi.org/10.1021/jacsau.2c00085

[40]. Yadav, G.; Yadava, U. Exploring the electronic structure and interaction mechanism of nucleic acid bases on pristine graphene and beryllium-oxide-graphene layers. Comput. Theor. Chem. 2024, 1239, 114787.
https://doi.org/10.1016/j.comptc.2024.114787

[41]. Gadre, S. R.; Suresh, C. H.; Mohan, N. Electrostatic Potential Topology for Probing Molecular Structure, Bonding and Reactivity. Molecules 2021, 26 (11), 3289.
https://doi.org/10.3390/molecules26113289

[42]. Kushwaha, Y.; Yadava, U. DFT investigation on the effect of asymmetry on electro-optical properties of bent-core liquid crystals. Ph. Transit. 2025, 98 (1), 55-71.
https://doi.org/10.1080/01411594.2025.2455575

[43]. Parr, R. G.; Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516.
https://doi.org/10.1021/ja00364a005

[44]. Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G. A.; Dahlgren, M. K.; Russell, E.; Von Bargen, C. D.; Abel, R.; Friesner, R. A.; Harder, E. D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021, 17, 4291-4300.
https://doi.org/10.1021/acs.jctc.1c00302

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).