European Journal of Chemistry

Effects of solvents on the aromaticity and thermodynamic properties of azacalix[2]arene[2]pyrimidines: A computational study

Crossmark


Main Article Content

Alihan Tosun
Fatma Kandemirli

Abstract

The Harmonic Oscillator Model of Aromaticity (HOMA) indexes for the 2,4,6,8-tetraaza-1(2,4),5(4,2)-dipyrimidina-3,7(1,3)-dibenzenacyclooctaphane (TPB) molecule were calculated in gas, ethanol, n-octanol and water phase. Solvent effects were analyzed with the use of the Integral Equation Formalism Polarizable Continuum Model (IEFPCM) as the default in the self-consistent reaction field (SCRF) method in Gaussian09. The HOMA indexes indicate the presence of highly aromatic pyrimidine and benzyl rings while the parameters for pyrimidine rings slightly decrease and those for the benzyl ring slightly increase with increasing dielectric constant. According to the results, the pyrimidine ring shows the highest aromaticity in the gas phase and a slight decrease in more polar solvents. In contrast, the benzene ring shows an increase in aromaticity as the solvent polarity increases. The HOMO energy of the TPB shifts downward in more polar solvents and the most significant shift occurs in the water phase. The HOMO-LUMO energy gap increases in polar solvents, indicating higher chemical stability and decreased reactivity in these solvents. These findings provide insight into the stability and reactivity of TPB in different phases for potential applications. In addition, apparent thermodynamic properties such as the heat capacity, entropy, enthalpy, and Gibbs free energy of TBP in various solvents were calculated. Using computational simulations, we derive heat capacity equations that exhibit similar quadratic and linear terms in both phases, differing only in their constants. The negative quadratic term leads to a decrease in heat capacity at very low temperatures.


icon graph This Abstract was viewed 76 times | icon graph Article PDF downloaded 12 times

How to Cite
(1)
Tosun, A.; Kandemirli, F. Effects of Solvents on the Aromaticity and Thermodynamic Properties of azacalix[2]arene[2]pyrimidines: A Computational Study. Eur. J. Chem. 2025, 16, 267-274.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Rashid, M.; Husain, A.; Shaharyar, M.; Mishra, R.; Hussain, A.; Afzal, O. Design and synthesis of pyrimidine molecules endowed with thiazolidin-4-one as new anticancer agents. Eur. J. Med. Chem. 2014, 83, 630-645.
https://doi.org/10.1016/j.ejmech.2014.06.033

[2]. Abdel-Mohsen, H. T.; Ragab, F. A.; Ramla, M. M.; El Diwani, H. I. Novel benzimidazole-pyrimidine conjugates as potent antitumor agents. Eur. J. Med. Chem. 2010, 45 (6), 2336-2344.
https://doi.org/10.1016/j.ejmech.2010.02.011

[3]. Shruthi, N.; Poojary,B.; Kumar, V.; Bhat,M.; Joshi,H.; Revanasiddappa, B. C. Synthesis, molecular properties and evaluation of anthelmintic activity of new thiazolopyrimidine derivatives, J. Chem. Pharm. Res. 2015, 7, 181-191.

[4]. Mohan, N. R.; Sreenivasa, S.; Manojkumar, K. E.; Rao, T. M.; Thippeswamy, B. S.; Suchetan, P. A. Synthesis, Antibacterial, Anthelmintic and Anti-Inflammatory Studies of Novel Methylpyrimidine Sulfonyl Piperazine Derivatives. J. Brazilian Chem. Soc. 2014, 25 (6), 1012-1020. https://doi.org/10.5935/0103-5053.20140073.
https://doi.org/10.5935/0103-5053.20140073

[5]. Abdel Moty, S. G.; Hussein, M. A.; Abdel Aziz, S. A.; Abou-Salim, M. A. Design and synthesis of some substituted thiazolo[3,2-a]pyrimidine derivatives of potential biological activities. Saudi Pharmaceutical Journal 2016, 24 (2), 119-132.
https://doi.org/10.1016/j.jsps.2013.12.016

[6]. Boschi, D.; Tosco, P.; Chandra, N.; Chaurasia, S.; Fruttero, R.; Griffin, R.; Wang, L.; Gasco, A. 6-Cyclohexylmethoxy-5-(cyano-NNO-azoxy)pyrimidine-4-amine: A new scaffold endowed with potent CDK2 inhibitory activity. Eur. J. Med. Chem. 2013, 68, 333-338.
https://doi.org/10.1016/j.ejmech.2013.07.031

[7]. Chan, S.; Han, K.; Qu, R.; Tong, L.; Li, Y.; Zhang, Z.; Cheng, H.; Lu, X.; Patterson, A.; Smaill, J.; Ren, X.; Ding, J.; Xie, H.; Ding, K. 2,4-Diarylamino-pyrimidines as kinase inhibitors co-targeting IGF1R and EGFRL858R/T790M. Bioorganic & Medicinal Chemistry Letters 2015, 25 (19), 4277-4281.
https://doi.org/10.1016/j.bmcl.2015.07.089

[8]. Addepalli, Y.; Yang, X.; Zhou, M.; Reddy, D. P.; Zhang, S.; Wang, Z.; He, Y. Synthesis and anticancer activity evaluation of novel azacalix[2]arene[2]pyrimidines. Eur. J. Med. Chem. 2018, 151, 214-225.
https://doi.org/10.1016/j.ejmech.2018.02.079

[9]. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2016. CA. A. Cancer J. Clinicians 2016, 66 (1), 7-30.
https://doi.org/10.3322/caac.21332

[10]. Vineis, P.; Wild, C. P. Global Cancer Patterns: Causes and Prevention. Lancet 2014, 383 (9916), 549-557.
https://doi.org/10.1016/S0140-6736(13)62224-2

[11]. Chtita, S. Modélisation de molécules organiques hétérocycliques biologiquement actives par des méthodes QSAR/QSPR. Recherche de nouveaux médicaments. Doctoral Dissertation, Université Moulay Ismaïl, Meknès, 2017. https://hal.science/tel-01568788v1

[12]. Levine I. N. Quantum Chemistry Chemistry Semiempirical and Molecular-Mechanics Treatments of Molecules Department, Brooklyn College, City University of New York.

[13]. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
https://doi.org/10.1063/1.464913

[14]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

[15]. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6, Semichem Inc.; Shawnee Mission, KS, 2016.

[16]. Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107 (8), 3032-3041.
https://doi.org/10.1063/1.474659

[17]. Bharathy, G.; Christian Prasana, J.; Muthu, S.; Irfan, A.; Basha Asif, F.; Saral, A.; Aayisha, S.; Niranjana devi, R. Evaluation of electronic and biological interactions between N-[4-(Ethylsulfamoyl)phenyl] acetamide and some polar liquids (IEFPCM solvation model) with Fukui function and molecular docking analysis. J. Molecular Liquids 2021, 340, 117271.
https://doi.org/10.1016/j.molliq.2021.117271

[18]. Selvakumari, S.; Murthy Potla, K.; Shanthi, D.; Irfan, A.; Muthu, S. Solvent effect on molecular, electronic parameters, topological analysis and Fukui function evaluation with biological studies of imidazo [1, 2-a] pyridine-8-carboxylic acid. J. Molecular Liquids 2023, 382, 121863.
https://doi.org/10.1016/j.molliq.2023.121863

[19]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[20]. Lu, T.; Chen, F. -W. Calculation of Molecular Orbital Composition[J]. Acta Chimica Sinica, 2011, 69(20): 2393-2406. https://sioc-journal.cn/Jwk_hxxb/EN/abstract/abstract340458.shtml

[21]. Lu, T.; Chen, F. Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm. J. Mol. Graph. Model. 2012, 38, 314-323.
https://doi.org/10.1016/j.jmgm.2012.07.004

[22]. Pedersen, J.; Mikkelsen, K. V. A benchmark study of aromaticity indexes for benzene, pyridine and the diazines - I. Ground state aromaticity. RSC. Adv. 2022, 12 (5), 2830-2842.
https://doi.org/10.1039/D2RA00093H

[23]. Gajda, L.; Kupka, T.; Broda, M. A. Solvent impact on the planarity and aromaticity of free and monohydrated zinc phthalocyanine: a theoretical study. Struct. Chem. 2017, 29 (3), 667-679.
https://doi.org/10.1007/s11224-017-1063-3

[24]. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2011, 33 (5), 580-592.
https://doi.org/10.1002/jcc.22885

[25]. Parr, R. G.; Pearson, R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105 (26), 7512-7516.
https://doi.org/10.1021/ja00364a005

[26]. Omer, R.; Ahmed, L.; Qader, I.; Koparir, P. Theoretical Analysis of the Reactivity of Carmustine and Lomustine Drugs. Journal of Physical Chemistry and Functional Materials 2022, 5 (1), 84-96.
https://doi.org/10.54565/jphcfum.1090661

[27]. Scrocco, E.; Tomasi, J. The Electrostatic Molecular Potential as a Tool for the Interpretation of Molecular Properties. In Topics in Current Chemistry Fortschritte der Chemischen Forschung; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 95-170.
https://doi.org/10.1007/3-540-06399-4_6

[28]. Gadre, S. R.; Suresh, C. H.; Mohan, N. Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 2021, 26, 3289.
https://doi.org/10.3390/molecules26113289

[29]. Tanış, E.; Babur Sas, E.; Kurban, M.; Kurt, M. The structural, electronic and spectroscopic properties of 4FPBAPE molecule: Experimental and theoretical study. J. Mol. Struc. 2018, 1154, 301-318.
https://doi.org/10.1016/j.molstruc.2017.10.057

[30]. Sherefedin, U.; Belay, A.; Gudishe, K.; Kebede, A.; Kumela, A. G.; Wakjira, T. L.; Asemare, S.; Gurumurthi, T. Effects of temperature and solvent polarity on the thermodynamic and photophysical properties of ferulic acid using density functional theory (DFT). Journal of Molecular Liquids 2024, 407, 125175.
https://doi.org/10.1016/j.molliq.2024.125175

[31]. Huang, Z.; Zun, Y.; Gong, Y.; Hu, X.; Sha, J.; Li, Y.; Li, T.; Ren, B. Solid-Liquid Equilibrium Solubility, Thermodynamic Properties, Solvent Effect of Ipriflavone in Twelve Pure Solvents at Various Temperatures. J. Chem. Thermodyn. 2020, 150 (106231), 106231.
https://doi.org/10.1016/j.jct.2020.106231

[32]. Li, T.; Zhu, L.; Li, J.; Cao, Z.; Sha, J.; Li, Y.; Ren, B. Solubility, thermodynamic properties and molecular simulation of tinidazole in fourteen mono-solvents at different temperatures. The Journal of Chemical Thermodynamics 2022, 170, 106767.
https://doi.org/10.1016/j.jct.2022.106767

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).