European Journal of Chemistry

Di-aqua-di-isothiocyanato-tin(II)-bis(18-crown-6), Sn(NCS)2·2(18-crown-6)·2H2O – A supramolecular compound of a low-valent main group element with bent sandwich architecture

Crossmark


Main Article Content

Hans Reuter

Abstract

The crystal structure of the title compound, di-aqua-di-isothiocyanato-tin(II)-bis(18-crown-6), was determined by single crystal X-ray structure analysis. The compound crystallizes in the monoclinic space group C2/c with half a molecule of the point group C2 in the asymmetric unit. The supramolecular arrangement of the three different building blocks, a bent Sn(NCS)2 one, a water molecule, and an 18-crown-6 molecule exhibits a bent sandwich-like structure with an opening angle of 48.1(1)° referring to the least-squares planes through the oxygen atoms of the crown ether molecules. Bond lengths and angles within this aggregate indicate that the isothiocyanate groups bond to the central, bivalent tin atom via covalent 2e-2c-bonds based on two orthogonal p orbitals of the metal atom, and the oxygen atoms of the water molecules via a symmetrical 3c-4e bond by use of the third metal p orbital. The crown ether molecules do not have oxygen-tin contacts but are hydrogen-bonded to the water molecules. Their conformation has similarities with that of an ideal D3d conformation.


icon graph This Abstract was viewed 257 times | icon graph Article PDF downloaded 61 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Reuter, H. Di-Aqua-Di-Isothiocyanato-tin(II)-bis(18-Crown-6), Sn(NCS)2·2(18-Crown-6)·2H2O – A Supramolecular Compound of a Low-Valent Main Group Element With Bent Sandwich Architecture. Eur. J. Chem. 2025, 16, 1-6.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Ozaki, M.; Katsuki, Y.; Liu, J.; Handa, T.; Nishikubo, R.; Yakumaru, S.; Hashikawa, Y.; Murata, Y.; Saito, T.; Shimakawa, Y.; Kanemitsu, Y.; Saeki, A.; Wakamiya, A. Solvent-Coordinated Tin Halide Complexes as Purified Precursors for Tin-Based Perovskites. ACS Omega 2017, 2 (10), 7016-7021.
https://doi.org/10.1021/acsomega.7b01292

[2]. Gurnani, C.; Hector, A. L.; Jager, E.; Levason, W.; Pugh, D.; Reid, G. Tin(ii) fluoride vs. tin(ii) chloride - a comparison of their coordination chemistry with neutral ligands. Dalton Trans. 2013, 42 (23), 8364-8374.
https://doi.org/10.1039/c3dt50743b

[3]. Barbul, I.; Varga, R. A.; Silvestru, C. Di-μ-chlorido-bis[chloridobis (dimethyl sulfoxide-κO)tin(II)]. Acta Crystallogr E. Struct. Rep. Online 2011, 67 (4), m486-m486.
https://doi.org/10.1107/S1600536811009895

[4]. Schrenk, C.; Köppe, R.; Schellenberg, I.; Pöttgen, R.; Schnepf, A. Synthese von Zinn(I)‐bromid. Ein neues binäres Halogenid für die Synthesechemie. Zeitschrift Anorg. Allge. Chemie 2009, 635 (11), 1541-1548.
https://doi.org/10.1002/zaac.200900228

[5]. Ermert, D. M.; Gembicky, M. Oxidative Addition of Alkyl Iodides to [Sn(NMe2)2]2: In Situ Generation of RSn(NMe2)3 Compounds. Organometallics 2024, 43 (9), 1030-1040.
https://doi.org/10.1021/acs.organomet.4c00096

[6]. Henkel, F.; Reuter, H. Two coordination compounds of SnCl2 with 4-methylpyridine N-oxide. Acta Crystallogr. E. Cryst. Commun. 2021, 77 (2), 91-95.
https://doi.org/10.1107/S2056989021000025

[7]. Selvaraju, R.; Panchanatheswaran, K.; Parthasarathi, V. Dichlorobis (triphenylphosphine oxide)tin(II). Acta Crystallogr. C. Cryst. Struct. Commun. 1998, 54 (7), 905-906.
https://doi.org/10.1107/S0108270198000328

[8]. Bauer, G. Handbuch der Präparativen Anorganischen Chemie; Ferdinand Enke Verlag, 1962.

[9]. Hennings, E.; Schmidt, H.; Köhler, M.; Voigt, W. Crystal structure of tin(II) perchlorate trihydrate. Acta Crystallogr. E. Struct. Rep. Online 2014, 70 (12), 474-476.
https://doi.org/10.1107/S1600536814024283

[10]. Donaldson, J. D.; Grimes, S. M.; Johnston, S. R.; Abrahams, I. Characterisation of the tin(II) hydroxide cation [Sn3(OH)4]2+, and the crystal structure of tritin(II) tetrahydroxide dinitrate. J. Chem. Soc., Dalton Trans. 1995, 2273-2276.
https://doi.org/10.1039/dt9950002273

[11]. Davies, C. G.; Donaldson, J. D. Basic tin(II) sulphates. J. Chem. Soc., A. 1967, 1790-1793.
https://doi.org/10.1039/j19670001790

[12]. Reuter, H.; Schröder, D.; Peckskamp, K. M6O4(OH)4 of M = Sn, Pb: Single Crystal Growth and Crystal Structure Determinations Far Away from Routine. Crystals 2023, 13 (5), 739.
https://doi.org/10.3390/cryst13050739

[13]. Ramik, R. A.; Organ, R. M.; Mandarino, J. A. On type romarchite and hydroromarchite from boundary falls, ontario, and notes on other occurrences. Can. Mineral. 2003, 41 (3), 649-657.
https://doi.org/10.2113/gscanmin.41.3.649

[14]. Schnering, H. G.; Nesper, R.; Pelshenke, H. Hydroxoverbindungen. 10. Über die Natriumoxohydroxostannate(II) Na4[Sn4O(OH)10] und Na2[Sn2O(OH)4]. Z. Anorg. Allg. Chem. 1983, 499 (4), 117-129.
https://doi.org/10.1002/zaac.19834990414

[15]. Nesper, R.; v. Schnering, H. G. Hydroxoverbindungen. 9. Barium‐Oxohydroxostannat(II) Ba[SnO(OH)]2. Z. Anorg. Allg. Chem. 1983, 499 (4), 109-116.
https://doi.org/10.1002/zaac.19834990413

[16]. Schnering, H. G.; Nesper, R.; Pelshenke, H. Sn21Cl16(OH)14O6, das sogenannte basische Zinn(II)-chlorid [1] / Sn21Cl16(OH)14O6, the So-called Basic Tin(II) Chloride. Z. fur Naturforsch. B 1981, 36 (12), 1551-1560.
https://doi.org/10.1515/znb-1981-1214

[17]. Uglova, E.; Reichelt, M.; Reuter, H. Formation and structural characterization of the basic tin(II) fluoride, Sn9F13O(OH)3 ⋅ 2H2O, containing the unprecedented [Sn4O(OH)3]3+ cage‐ion. Z. Anorg. Allg. Chem. 2022, 648 (24), e2022003 https://doi.org/10.1002/ zaac.202200302.
https://doi.org/10.1002/zaac.202200302

[18]. Kamenar, B.; Grdenic, D. 770. The crystal structure of stannous chloride dihydrate. J. Chem. Soc. 1961, 3954-3958.
https://doi.org/10.1039/jr9610003954

[19]. Andersson, J. On the Crystal Structure of a Tin(II) Bromide Hydrate, 2SnBr2.H2O. Acta Chem. Scand. 1972, 26, 1730-1730.
https://doi.org/10.3891/acta.chem.scand.26-1730

[20]. Andersson, J. On the Crystal Structure of a Tin(II) Bromide Hydrate, 3SnBr2.H2O. Acta Chem. Scand. 1972, 26, 3813-3813.
https://doi.org/10.3891/acta.chem.scand.26-3813

[21]. Andersson, J. On the Crystal Structure of a Tin(II) Bromide Hydrate, 6SnBr2.5H2O. Acta Chem. Scand. 1972, 26, 2543-2543.
https://doi.org/10.3891/acta.chem.scand.26-2543

[22]. Wechwithayakhlung, C.; Packwood, D. M.; Chaopaknam, J.; Worakajit, P.; Ittisanronnachai, S.; Chanlek, N.; Promarak, V.; Kongpatpanich, K.; Harding, D. J.; Pattanasattayavong, P. Tin(ii) thiocyanate Sn(NCS)2 - a wide band gap coordination polymer semiconductor with a 2D structure. J. Mater. Chem. C. 2019, 7 (12), 3452-3462.
https://doi.org/10.1039/C8TC06150E

[23]. Harpel, P. Zinn(II)-Thiocyanat, Sn(NCS)2: Seine Synthese, Kristallstruktur und chemischen Eigenschaften unter besonderer Berücksichtigung seiner Komplexe mit ein- und mehrzähnigen Lewis-Basen. Bachelor Thesis, Osnabrück University, Osnabrück, 2012.

[24]. Reuter, H.; Reichelt, M.; Harpel, P. Structural Aspects of Molecular Coordination Compounds of Tin(II) Thiocyanate, Sn(NCS)2. 42th International Conference on Coordination Chemistry, Brest, Frankreich; 2016.

[25]. Schröder, S.; Röwekamp‐Krugley, N.; Imwalle, M.; Reuter, H. From Tin(II) to Tin(IV): Following Solid‐liquid Reactions by Microscopy. Z. Anorg. Allg. Chem. 2024, 650 (22), e202400091 https://doi.org/10.1002/zaac.202400091.
https://doi.org/10.1002/zaac.202400091

[26]. Chamberlain, B. R.; Moser, W. Tin(II) thiocyanate and complex thiocyanates. J. Chem. Soc., A. 1969, 354-358.
https://doi.org/10.1039/j19690000354

[27]. Bruker (2009). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[28]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[29]. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Crystal Impact GbR, Bonn, Germany, 1999.

[30]. POV-Ray - Persistence of Vision Raytracer, Version 3.6; Persistence of Vision Pty. Ltd.: Retrieved from http://www.povray.org/download/ (accessed February 1, 2025).

[31]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0- new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908

[32]. Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009, 113 (19), 5806-5812.
https://doi.org/10.1021/jp8111556

[33]. Clearfield, A.; Warner, D. K.; Saldarriaga-Molina, C. H.; Ropal, R.; Bernal, I. Structural Studies of (π-C5H5)2MX2 Complexes and their Derivatives. The Structure of Bis(π-cyclopentadienyl)titanium Dichloride. Can. J. Chem. 1975, 53 (11), 1622-1629.
https://doi.org/10.1139/v75-228

[34]. Pimentel, G. C. The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. J. Chem. Phys. 1951, 19 (4), 446-448.
https://doi.org/10.1063/1.1748245

[35]. Kleeberg, F. M.; Zimmermann, L. W.; Schleid, T. The Crystal Structures of Two Hydro-closo-Borates with Divalent Tin in Comparison: Sn(H2O)3[B10H10] · 3 H2O and Sn(H2O)3[B12H12] · 4 H2O. J. Clust. Sci. 2021, 33 (6), 2489-2497.
https://doi.org/10.1007/s10876-021-02166-6

[36]. Maverick, E.; Seiler, P.; Schweizer, W. B.; Dunitz, J. D. 1,4,7,10,13,16-Hexaoxacyclooctadecane: crystal structure at 100 K. Acta Crystallogr. B. Struct. Sci. 1980, 36 (3), 615-620.
https://doi.org/10.1107/S0567740880003937

[37]. Fyles, T. M.; Gandour, R. D. On the solid-state conformations of 18-crown-6 complexes. J. Incl. Phenom. Macrocycl. Chem. 1992, 12 (1-4), 313-332.
https://doi.org/10.1007/BF01053871

Supporting Agencies

Deutsche Forschungsgemeinschaft (DFG) and the Government of Lower-Saxony, Germany.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).