European Journal of Chemistry

Exploring flavone reactivity: A quantum mechanical study and TD-DFT benchmark on UV-vis spectroscopy

Crossmark


Main Article Content

Manjeet Bhatia

Abstract

Flavones are known for their broad spectrum of pharmacological and biological activities, making them promising candidates for drug development and complementary medicine. In this study, a comprehensive analysis of the chemical reactivity, kinetic stability, and biological potential of the flavone molecule is performed using density functional theory (DFT) at the D3-B3LYP/6-311++G(d,p) level. The key molecular properties-proton affinity (PA), ionization energy (IE) and electron affinity (EA)-are calculated alongside global reactivity descriptors such as chemical potential (μ), chemical hardness (η), softness (σ), electrophilic index (ω), and electronegativity (χ). To ensure the reliability and cost-effectiveness of the chosen DFT method, a comparative analysis is performed using various functionals, including D3-B3LYP, wB97XD, M06-2X and MP2. Furthermore, time-dependent DFT (TD-DFT) calculations are performed with multiple functionals B3LYP, CAM-B3LYP, PBE0, M06-2X, LC-wHPBE and wB97XD to investigate the excited-state properties and UV-visible absorption spectra of flavone. The results indicate that CAM-B3LYP, M06-2X, and wB97XD provide the most accurate predictions for the absorption characteristics of the flavone molecule.


icon graph This Abstract was viewed 95 times | icon graph Article PDF downloaded 17 times

How to Cite
(1)
Bhatia, M. Exploring Flavone Reactivity: A Quantum Mechanical Study and TD-DFT Benchmark on UV-Vis Spectroscopy. Eur. J. Chem. 2025, 16, 242-250.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. The American Journal of Clinica. Nutrition 2004, 79 (5), 727-747.
https://doi.org/10.1093/ajcn/79.5.727

[2]. Donadio, G.; Mensitieri, F.; Santoro, V.; Parisi, V.; Bellone, M. L.; De Tommasi, N.; Izzo, V.; Dal Piaz, F. Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics 2021, 13 (5), 660.
https://doi.org/10.3390/pharmaceutics13050660

[3]. de Souza Farias, S. A.; da Costa, K. S.; Martins, J. B. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol. ACS. Omega 2021, 6 (13), 8908-8918.
https://doi.org/10.1021/acsomega.0c06156

[4]. Wang, X.; Cao, Y.; Chen, S.; Lin, J.; Bian, J.; Huang, D. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship. J. Agric. Food. Chem. 2021, 69 (26), 7285-7302.
https://doi.org/10.1021/acs.jafc.1c02015

[5]. Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An Overview of Bioactive Flavonoids from Citrus Fruits. Applied Sciences 2021, 12 (1), 29.
https://doi.org/10.3390/app12010029

[6]. Khan, A. K.; Kousar, S.; Tungmunnithum, D.; Hano, C.; Abbasi, B. H.; Anjum, S. Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. Applied Sciences 2021, 11 (4), 1694.
https://doi.org/10.3390/app11041694

[7]. Mazidi, M.; Katsiki, N.; Banach, M. A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: results from a multiethnic study. The Journal of Nutritional Biochemistry 2019, 65, 66-71.
https://doi.org/10.1016/j.jnutbio.2018.10.001

[8]. Zhao, L.; Yuan, X.; Wang, J.; Feng, Y.; Ji, F.; Li, Z.; Bian, J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorganic & Medicinal Chemistry 2019, 27 (5), 677-685.
https://doi.org/10.1016/j.bmc.2019.01.027

[9]. Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D. K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods 'Hyperin': Health benefits of the past, the present, the future. Beni-Suef University Journal of Basic and Applied Sciences 2018, 7 (1), 31-42.
https://doi.org/10.1016/j.bjbas.2017.05.009

[10]. de Andrade Teles, R. B.; Diniz, T. C.; Costa Pinto, T. C.; de Oliveira Júnior, R. G.; Gama e Silva, M.; de Lavor, E. M.; Fernandes, A. W.; de Oliveira, A. P.; de Almeida Ribeiro, F. P.; da Silva, A. A.; Cavalcante, T. C.; Quintans Júnior, L. J.; da Silva Almeida, J. R. Flavonoids as Therapeutic Agents in Alzheimer's and Parkinson's Diseases: A Systematic Review of Preclinical Evidences. Oxidative Medicine and Cellular Longevity 2018, 2018 (1), 7043213 https://doi.org/10.1155/2018/7043213.
https://doi.org/10.1155/2018/7043213

[11]. Meng-zhen, S.; Ju, L.; Lan-chun, Z.; Cai-feng, D.; Shu-da, Y.; Hao-fei, Y.; Wei-yan, H. Potential therapeutic use of plant flavonoids in AD and PD. Heliyon 2022, 8 (11), e11440.
https://doi.org/10.1016/j.heliyon.2022.e11440

[12]. Luca, S. V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A. C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition 2019, 60 (4), 626-659.
https://doi.org/10.1080/10408398.2018.1546669

[13]. Tao, H.; Li, L.; He, Y.; Zhang, X.; Zhao, Y.; Wang, Q.; Hong, G. Flavonoids in vegetables: improvement of dietary flavonoids by metabolic engineering to promote health. Critical Reviews in Food Science and Nutrition 2022, 64 (11), 3220-3234.
https://doi.org/10.1080/10408398.2022.2131726

[14]. Zhuang, W.; Li, Y.; Shu, X.; Pu, Y.; Wang, X.; Wang, T.; Wang, Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023, 28 (8), 3599.
https://doi.org/10.3390/molecules28083599

[15]. Mia, R.; Toki, G. F.; Kamal, S. A. Nanoscale Coating for Flavonoid-Based Natural Colorants. Engineering Materials 2024, 171-207.
https://doi.org/10.1007/978-981-97-5922-4_8

[16]. Latos-Brozio, M.; Masek, A.; Piotrowska, M. Polymeric Forms of Plant Flavonoids Obtained by Enzymatic Reactions. Molecules 2022, 27 (12), 3702.
https://doi.org/10.3390/molecules27123702

[17]. Rizvi, M.; Gerengi, H.; Gupta, P. Functionalization of Nanomaterials: Synthesis and Characterization. ACS. Symposium Series 2022, 1-26.
https://doi.org/10.1021/bk-2022-1418.ch001

[18]. Spiegel, M.; Andruniów, T.; Sroka, Z. Flavones' and Flavonols' Antiradical Structure-Activity Relationship-A Quantum Chemical Study. Antioxidants 2020, 9 (6), 461.
https://doi.org/10.3390/antiox9060461

[19]. Bhatti, H. A.; Uddin, N.; Ayub, K.; Saima, B.; Uroos, M.; Iqbal, J.; Anjum, S.; Light, M. E.; Hameed, A.; Khan, K. M. Synthesis, characterization of flavone, isoflavone, and 2,3-dihydrobenzofuran-3-carboxylate and density functional theory studies. Eur. J. Chem. 2015, 6 (3), 305-313.
https://doi.org/10.5155/eurjchem.6.3.305-313.1268

[20]. De Souza, L. A.; Tavares, W. M.; Lopes, A. P.; Soeiro, M. M.; De Almeida, W. B. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chemical Physics Letters 2017, 676, 46-52.
https://doi.org/10.1016/j.cplett.2017.03.038

[21]. Chattaraj, P. K.; Maiti, B.; Sarkar, U. Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A. 2003, 107 (25), 4973-4975.
https://doi.org/10.1021/jp034707u

[22]. Jensen, F. Introduction to Computational Chemistry, 3rd ed.; John Wiley & Sons: Nashville, TN, 2016.

[23]. Balachandran, V.; Rajeswari, S.; Lalitha, S. Vibrational spectral analysis, computation of thermodynamic functions for various temperatures and NBO analysis of 2,3,4,5-tetrachlorophenol using ab initio HF and DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 101, 356-369.
https://doi.org/10.1016/j.saa.2012.09.102

[24]. Padmaja, L.; Ravikumar, C.; Sajan, D.; Hubert Joe, I.; Jayakumar, V. S.; Pettit, G. R.; Faurskov Nielsen, O. Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2. J. Raman Spectroscopy 2008, 40 (4), 419-428.
https://doi.org/10.1002/jrs.2145

[25]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

[26]. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785

[27]. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics 1980, 72 (1), 650-654.
https://doi.org/10.1063/1.438955

[28]. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li-F. J. Comput. Chem. 1983, 4 (3), 294-301.
https://doi.org/10.1002/jcc.540040303

[29]. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456-1465.
https://doi.org/10.1002/jcc.21759

[30]. Schröder, H.; Creon, A.; Schwabe, T. Reformulation of the D3(Becke-Johnson) Dispersion Correction without Resorting to Higher than C6 Dispersion Coefficients. J. Chem. Theory. Comput. 2015, 11 (7), 3163-3170.
https://doi.org/10.1021/acs.jctc.5b00400

[31]. Mustafa, S. R.; Al-Ani, H. N. Calculation of vibrational frequencies, Energetic and some other Quantum Chemical Parameters for some Flavonoids. J. Phys.: Conf. Ser. 2021, 1999 (1), 012018.
https://doi.org/10.1088/1742-6596/1999/1/012018

[32]. Ali, H. M.; Ali, I. H. Structure-antioxidant activity relationships, QSAR, DFT calculation, and mechanisms of flavones and flavonols. Med. Chem. Res. 2019, 28 (12), 2262-2269.
https://doi.org/10.1007/s00044-019-02452-z

[33]. Janak, J. F. Proof that∂E∂ni=εin density-functional theory. Phys. Rev. B. 1978, 18 (12), 7165-7168.
https://doi.org/10.1103/PhysRevB.18.7165

[34]. Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121 (9), 1922-1924.
https://doi.org/10.1021/ja983494x

[35]. Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1 (1-6), 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2

[36]. Vidhya, V.; Austine, A.; Arivazhagan, M. Molecular structure, aromaticity, vibrational investigation and dual descriptor for chemical reactivity on 1- chloroisoquinoline using quantum chemical studies. Results in Materials 2020, 6, 100097.
https://doi.org/10.1016/j.rinma.2020.100097

[37]. Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity Index. Chem. Rev. 2006, 106 (6), 2065-2091.
https://doi.org/10.1021/cr040109f

[38]. Bhatia, M. An overview of conceptual-DFT based insights into global chemical reactivity of volatile sulfur compounds (VSCs). Computational Toxicology 2024, 29, 100295.
https://doi.org/10.1016/j.comtox.2023.100295

[39]. Bhatia, M.; Manini, N.; Biasioli, F.; Cappellin, L. Calculated rate coefficients between CI-MS reagent ions and organosulfur compounds causing food taints and off-flavours. International Journal of Mass Spectrometry 2022, 478, 116860.
https://doi.org/10.1016/j.ijms.2022.116860

[40]. Taniguchi, M.; LaRocca, C. A.; Bernat, J. D.; Lindsey, J. S. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J. Nat. Prod. 2023, 86 (4), 1087-1119.
https://doi.org/10.1021/acs.jnatprod.2c00720

[41]. Payán-Gómez, S. A.; Flores-Holguín, N.; Pérez-Hernández, A.; Piñón-Miramontes, M.; Glossman-Mitnik, D. Computational molecular characterization of the flavonoid rutin. Chemistry Central Journal 2010, 4 (1), https://doi.org/10.1186/1752-153X-4-12.
https://doi.org/10.1186/1752-153X-4-12

[42]. Butnariu, M. Physical Properties and Identification of Flavonoids by Ultraviolet-Visible Spectroscopy. IJBP. 2023, 8 (2), https://doi.org/10.23880/ijbp-16000239.
https://doi.org/10.23880/ijbp-16000239

[43]. Mabry, T.; Markham, K. R.; Thomas, M. B. The Systematic Identification of Flavonoids; Springer Science+Business Media: New York, NY, 2012.

[44]. Sancho, M. I.; Almandoz, M. C.; Blanco, S. E.; Castro, E. A. Spectroscopic Study of Solvent Effects on the Electronic Absorption Spectra of Flavone and 7-Hydroxyflavone in Neat and Binary Solvent Mixtures. IJMS. 2011, 12 (12), 8895-8912.
https://doi.org/10.3390/ijms12128895

[45]. Van Bay, M.; Hien, N. K.; Tran, P. T.; Tuyen, N. T.; Oanh, D. T.; Nam, P. C.; Quang, D. T. TD‐DFT benchmark for UV‐Vis spectra of coumarin derivatives. Vietnam Journal of Chemistry 2021, 59 (2), 203-210.
https://doi.org/10.1002/vjch.202000200

[46]. Sameh, A. Theoretical Study of the Hydrogenation Reactions between 1,2-diazene and Flavonoid Molecules. Orient J. Chem. 2012, 28(4), 1605-1612. http://www.orientjchem.org/?p=11914
https://doi.org/10.13005/ojc/280408

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).