European Journal of Chemistry

Response surface methodology optimization and modeling of green synthesis conditions for TiO2-ZnO nanocomposites using Vigna unguiculata L. extract

Crossmark


Main Article Content

Auwal Yushau
Kamaluddeen Suleiman Kabo
Siaka Abdulfatai Adabara

Abstract

Developing a more efficient and sustainable method than conventional chemical and physical approaches to synthesize TiO2-ZnO nanocomposites is essential to reduce environmental impact. Green synthesis offers a sustainable alternative, minimizing toxic solvents and utilizing renewable biological sources. TiO2-ZnO NCs is a well-known binary nanocomposite with different potential biomedical, photocatalysis and solar cell applications due to its excellent physiochemical properties. This study presents the response surface methodology, optimization, and modeling of the reaction conditions of TiO2-ZnO NCs by green synthesis using the co-precipitation method from Vigna unguiculata L. extract as a reducing and stabilizing agent. Optimization of independent reaction conditions such as amount of dopant, reaction temperature, initial pH, and stirring time was performed using Response Surface Methodology-Box Behnken Design (RSM-BBD) of the design expert version 13 software (DX13). The strength and amount of active site of the synthesized TiO2-ZnO NCs were calculated by back titration analysis. The results show that TiO2-ZnO NCs were successfully precipitated and the optimization study obtained shows that the optimum number of active sites (8.881 mmol/g) of the TiO2-ZnO NCs was achieved at 10.00% MR of TiO2, 90 °C reaction temperature, initial pH of 11 and 23 min stirring time. The optimal reaction conditions were supported and confirmed by the solution ramp functions and bar graph plots. Statistically, the regression model and analysis of variance (ANOVA) revealed that the initial pH was the most significant parameter among the selected reaction conditions with the probability value (p-values) of 0.0011. The two-dimensional (2D) contour and three-dimensional (3D) response surface plots demonstrated a good interaction between the reaction variables during the biosynthesis. The porosity, particle size distribution (PSD) and specific surface area (SSA) of optimized TiO2-ZnO NCs were evaluated using the nonlinear density functional theory (NLDFT) method. Consequently, the pore volume, pore size and SSA for the developed TiO2-ZnO NCs were found to be 5.45×10-2 cm3/g, 3.23 nm, and 351.80 m2/g, respectively, indicating that the optimized TiO2-ZnO NCs are mesoporous in nature. This work indicated that mesoporous TiO2-ZnO NCs were prepared through the novel use of Vigna unguiculata L. extract. RSM-BBD was successfully used in the design of experiment, model development, and optimization of highly active TiO2-ZnO NCs production.


icon graph This Abstract was viewed 8 times | icon graph Article PDF downloaded 1 times

How to Cite
(1)
Yushau, A.; Kabo, K. S.; Adabara, S. A. Response Surface Methodology Optimization and Modeling of Green Synthesis Conditions for TiO2-ZnO Nanocomposites Using Vigna Unguiculata L. Extract. Eur. J. Chem. 2025, 16, 154-168.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Kumar, P. S. M. Francis, A. P.; Devasena, T. Biosynthesized and chemically synthesized Titania nanoparticles: Comparative analysis of antibacterial activity. J. Environ. Nanotechnol. 2014, 3, 73-81.
https://doi.org/10.13074/jent.2014.09.143098

[2]. Robert, D.; Weber, J. V. Titanium Dioxide Synthesis by Sol Gel Methods and Evaluation of Their Photocatalytic Activity J. Mater. Sci. Lett. 1999, 18, 97-98.
https://doi.org/10.1023/A:1006645930952

[3]. Chandra, A.; Bhattarai, A.; Yadav, A. K.; Adhikari, J.; Singh, M.; Giri, B. Green Synthesis of Silver Nanoparticles Using Tea Leaves from Three Different Elevations. ChemistrySelect 2020, 5 (14), 4239-4246.
https://doi.org/10.1002/slct.201904826

[4]. Syahin Firdaus Aziz Zamri, M.; Sapawe, N. Effect of pH on Phenol Degradation Using Green Synthesized Titanium Dioxide Nanoparticles. Mater. Today: Proc. 2019, 19, 1321-1326.
https://doi.org/10.1016/j.matpr.2019.11.144

[5]. Kalyanasundaram, S.; Prakash, M. J. Biosynthesis and characterization of titanium dioxide nanoparticles using Pithecellobium Dulce and Lagenaria siceraria aqueous leaf extract and screening their free radical scavenging and antibacterial properties. Int. Lett. Chem. Phys. Astron. 2015, 50, 80-95.
https://doi.org/10.56431/p-0c3605

[6]. Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. "Green" synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology 2018, 16, 84.
https://doi.org/10.1186/s12951-018-0408-4

[7]. Singh, J.; Kumar, V.; Kim, K.; Rawat, M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ. Res. 2019, 177, 108569.
https://doi.org/10.1016/j.envres.2019.108569

[8]. Awad, M.; Farrag, A.; Aboelnga, M.; El‐Bindary, A. Optimization of Photocatalytic Degradation of Rhodamine B and Indigo Carmine Dyes Using Eco‐Friendly Kaolinite‐Silver Oxide Quantum Dots Nanocomposite Under Sunlight Irradiation. Applied Organom Chemis 2024, 39 (2), 7842.
https://doi.org/10.1002/aoc.7842

[9]. Singh, J.; Mehta, A.; Rawat, M.; Basu, S. Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction. J. Environ. Chem. Eng. 2018, 6 (1), 1468-1474.
https://doi.org/10.1016/j.jece.2018.01.054

[10]. Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13 (10), 2638-2650.
https://doi.org/10.1039/c1gc15386b

[11]. Shaker, S.; Mohsin, A. K.; edan, M. Preparation Tio2and Zno/Tio2nanocomposites locally and use against Staphylococcus aureus. IOP. Conf. Ser.: Mater. Sci. Eng. 2020, 928 (7), 072014.
https://doi.org/10.1088/1757-899X/928/7/072014

[12]. Mondal, K.; Sharma, A. Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC. Adv. 2016, 6 (87), 83589-83612.
https://doi.org/10.1039/C6RA18102C

[13]. Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M. G.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 2022, 14 (7), 1444.
https://doi.org/10.3390/polym14071444

[14]. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908-931.
https://doi.org/10.1016/j.arabjc.2017.05.011

[15]. Gupta, S. M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56 (16), 1639-1657.
https://doi.org/10.1007/s11434-011-4476-1

[16]. Nabi, G.; Qurat-ul-Aain, ; Khalid, N. R.; Tahir, M. B.; Rafique, M.; Rizwan, M.; Hussain, S.; Iqbal, T.; Majid, A. A Review on Novel Eco-Friendly Green Approach to Synthesis TiO2 Nanoparticles Using Different Extracts. J. Inorg Organomet Polym 2018, 28 (4), 1552-1564.
https://doi.org/10.1007/s10904-018-0812-0

[17]. Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological synthesis of metallic nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 2010, 6 (2), 257-262.
https://doi.org/10.1016/j.nano.2009.07.002

[18]. Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31 (2), 346-356.
https://doi.org/10.1016/j.biotechadv.2013.01.003

[19]. Kashale, A. A.; Gattu, K. P.; Ghule, K.; Ingole, V. H.; Dhanayat, S.; Sharma, R.; Chang, J.; Ghule, A. V. Biomediated green synthesis of TiO2 nanoparticles for lithium ion battery application. Compos. B: Eng. 2016, 99, 297-304.
https://doi.org/10.1016/j.compositesb.2016.06.015

[20]. Sett, A.; Gadewar, M.; Sharma, P.; Deka, M.; Bora, U. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Adv. Nat. Sci: Nanosci. Nanotechnol. 2016, 7 (2), 025005.
https://doi.org/10.1088/2043-6262/7/2/025005

[21]. Santhoshkumar, T.; Rahuman, A. A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A. V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 2014, 7 (12), 968-976.
https://doi.org/10.1016/S1995-7645(14)60171-1

[22]. Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D. T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10 (2), 387.
https://doi.org/10.3390/nano10020387

[23]. Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart Res 2012, 14 (9).
https://doi.org/10.1007/s11051-012-1109-9

[24]. Sridevi, K. P.; Prasad, L. G.; Sangeetha, B.; Sivakumar, S. Structural and optical study of ZnO-TiO2 nanocomposites. JOR. 2022, 18 (3), 453-464.
https://doi.org/10.15251/JOR.2022.183.453

[25]. Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater. Lett. 2012, 75, 196-199.
https://doi.org/10.1016/j.matlet.2012.02.018

[26]. Hunagund, S. M.; Desai, V. R.; Kadadevarmath, J. S.; Barretto, D. A.; Vootla, S.; Sidarai, A. H. Biogenic and chemogenic synthesis of TiO2NPs via hydrothermal route and their antibacterial activities. RSC. Adv. 2016, 6 (99), 97438-97444.
https://doi.org/10.1039/C6RA22163G

[27]. Sundrarajan, M.; Bama, K.; Bhavani, M.; Jegatheeswaran, S.; Ambika, S.; Sangili, A.; Nithya, P.; Sumathi, R. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J. Photochem. Photobiol. B: Biol. 2017, 171, 117-124.
https://doi.org/10.1016/j.jphotobiol.2017.05.003

[28]. Naik, R.; Jones, S.; Murray, C.; McAuliffe, J.; Vaia, R.; Stone, M. Peptide Templates for Nanoparticle Synthesis Derived from Polymerase Chain Reaction‐Driven Phage Display. Adv Funct Materials 2004, 14 (1), 25-30.
https://doi.org/10.1002/adfm.200304501

[29]. Dobrucka R. Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba. Iran. J. Pharm. Res. Spring, 2017, 16(2), 753-759.

[30]. Khade, G. V.; Suwarnkar, M. B.; Gavade, N. L.; Garadkar, K. M. Green synthesis of TiO2 and its photocatalytic activity. J. Mater Sci: Mater Electron 2015, 26 (5), 3309-3315.
https://doi.org/10.1007/s10854-015-2832-7

[31]. Thamima, M.; Karuppuchamy, S. Biosynthesis of Titanium Dioxide and Zinc Oxide Nanoparticles from Natural Sources: A Review. Adv Sci Engng Med 2015, 7 (1), 18-25.
https://doi.org/10.1166/asem.2015.1648

[32]. Singh, J.; Kumar, S.; Rishikesh, ; Manna, A. K.; Soni, R. Fabrication of ZnO-TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Opt. Mater. 2020, 107, 110138.
https://doi.org/10.1016/j.optmat.2020.110138

[33]. Kharissova, O. V.; Dias, H. R.; Kharisov, B. I.; Pérez, B. O.; Pérez, V. M. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31 (4), 240-248.
https://doi.org/10.1016/j.tibtech.2013.01.003

[34]. Rusman, E.; Heryanto, H.; Fahri, A. N.; Rahmat, R.; Mutmainna, I.; Tahir, D. Green synthesis ZnO/TiO2 for high recyclability rapid sunlight photodegradation wastewater. MRS Adv. 2022, 7, 444-449.
https://doi.org/10.1557/s43580-021-00201-2

[35]. Keleşoğlu, G. S.; Özdinçer, M.; Dalmaz, A.; Zenkin, K.; Durmuş, S. Green synthesis and structural characterization of ZnO nanoparticle and ZnO@TiO2 nanocomposite by Cinnamomum verum bark extract. Turk. J. Anal. Chem. 2023, 5 (2), 118-123.
https://doi.org/10.51435/turkjac.1395817

[36]. Haghighizadeh, A.; Aghababai Beni, A.; Haghmohammadi, M.; Adel, M. S.; Farshad, S. Green Synthesis of ZnO-TiO2 Nano-Photocatalyst Doped with Fe(III) Ions Using Bitter Olive Extract to Treat Textile Wastewater Containing Reactive Dyes. Water Air Soil Pollut 2023, 234 (6), 200-220.
https://doi.org/10.1007/s11270-023-06374-w

[37]. Atiek, E.; Matebu, A.; Tsegaye, D.; Behailu, G.; Abebe, B. Green synthesis of TiO2/ZnO heterostructure using Urtica Smensis leaf extract for antibacterial activity. Results Chem. 2024, 12, 101880.
https://doi.org/10.1016/j.rechem.2024.101880

[38]. Bognár, S.; Putnik, P.; Šojić Merkulov, D. Sustainable Green Nanotechnologies for Innovative Purifications of Water: Synthesis of the Nanoparticles from Renewable Sources. Nanomaterials 2022, 12 (2), 263.
https://doi.org/10.3390/nano12020263

[39]. Ibrahim, M. M.; Sani, H. R.; Yahuza, K. M.; Yusuf, A. H.; Bungudu, A. B. Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3. Eur. J. Chem. 2021, 12, 289-298.
https://doi.org/10.5155/eurjchem.12.3.289-298.2127

[40]. Deriase, S. F.; El‐Salamony, R. A.; Amdeha, E.; Al‐Sabagh, A. M. Statistical optimization of photocatalytic degradation process of methylene blue dye by SnO-TiO2-AC composite using response surface methodology. Env Prog and Sustain Energy 2021, 40 (5), e13639.
https://doi.org/10.1002/ep.13639

[41]. Yushau, A.; Gaya, U. Carbon-Tunable p-type ZnO Nanoparticles for Enhanced Photocatalytic Removal of Eriochrome Black T. J. Phys. Chem. Funct. Mater. 2023, 6, 1-17.
https://doi.org/10.54565/jphcfum.1253804

[42]. Muhammad, A.; Sulai̇man Kabo, K.; Yushau, A. Visible Light Induced Photocatalytic Removal of Methylene Blue Using Cu-tunable p-type ZnO Nanoparticles. J. Phys. Chem. Funct. Mater. 2023, 6, 1-14.
https://doi.org/10.54565/jphcfum.1321022

[43]. Yusha'u, A.; Darma, M. S.; Isah, K. A. Sol-gel synthesis of ZnO nanoparticles for optmized photocatalytic degradation of eriochrome Black T under UV irradiation. Alger. J. Eng. Technol. 2023, 8 (1), 117-130.

[44]. Yusha'u, A.; Siaka, A. A.; Sulaiman Kabo, K.; Muhammad, A. Manganese-Tunable p-type ZnO Nanoscale for Optimized Photocatalytic Degradation of Terasil Blue from Wastewater. Res. Biotechnol. Environ. Sci. 2022, 2 (4), 88-101.
https://doi.org/10.58803/rbes.v2i4.32

[45]. Ghorbani, F.; Gorji, P.; Mobarakeh, M. S.; Mozaffari, H. R.; Masaeli, R.; Safaei, M. Optimized Synthesis of Xanthan gum/ZnO/TiO2Nanocomposite with High Antifungal Activity against Pathogenic Candida albicans. J. Nanomater. 2022, 2022 (1).
https://doi.org/10.1155/2022/7255181

[46]. Rajakumar, G.; Rahuman, A. A.; Priyamvada, B.; Khanna, V. G.; Kumar, D. K.; Sujin, P. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater. Lett. 2012, 68, 115-117.
https://doi.org/10.1016/j.matlet.2011.10.038

[47]. Gadore, V.; Singh, A. K.; Mishra, S. R.; Ahmaruzzaman, M. RSM approach for process optimization of the photodegradation of congo red by a novel NiCo2S4/chitosan photocatalyst. Sci. Rep. 2024, 14, 1118.
https://doi.org/10.1038/s41598-024-51618-2

[48]. Lee, S. Y.; Kang, D.; Jeong, S.; Do, H. T.; Kim, J. H. Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega 2020, 5 (8), 4233-4241.
https://doi.org/10.1021/acsomega.9b04127

[49]. Sani, K. I.; Gaya, U.; Hami̇su, A. Synthesis of visible light response S-SnO2 catalyst for optimized photodegradation of bromophenol blue. J. Phys. Chem. Funct. Mater. 2021, 4, 22-33.
https://doi.org/10.54565/jphcfum.1008388

[50]. Dihom, H.; Mohamed, R. M. S. R.; Al-Gheethi, A.; Mohamed, W. A. B. W. Optimization and modeling of solar photocatalytic degradation of raw textile wastewater dyes using green ZnO-ED NPs by RSM. Water Pract. Technol. 2024, 19, 2279-2305.
https://doi.org/10.2166/wpt.2024.132

[51]. Es-haghi, A.; Taghavizadeh Yazdi, M. E.; Sharifalhoseini, M.; Baghani, M.; Yousefi, E.; Rahdar, A.; Baino, F. Application of Response Surface Methodology for Optimizing the Therapeutic Activity of ZnO Nanoparticles Biosynthesized from Aspergillus niger. Biomimetics 2021, 6 (2), 34.
https://doi.org/10.3390/biomimetics6020034

[52]. Dhandapani, P.; Maruthamuthu, S.; Rajagopal, G. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J. Photochem. Photobiol. B: Biol. 2012, 110, 43-49.
https://doi.org/10.1016/j.jphotobiol.2012.03.003

[53]. Akerdi, A. G.; Bahrami, S. H.; Pajootan, E. Modeling and optimization of Photocatalytic Decolorization of binary dye solution using graphite electrode modified with Graphene oxide and TiO2. J. Environ Health Sci Engineer 2020, 18 (1), 51-62.
https://doi.org/10.1007/s40201-019-00437-z

[54]. Rakhmanova, A.; Kalybekkyzy, S.; Soltabayev, B.; Bissenbay, A.; Kassenova, N.; Bakenov, Z.; Mentbayeva, A. Application of Response Surface Methodology for Optimization of Nanosized Zinc Oxide Synthesis Conditions by Electrospinning Technique. Nanomaterials 2022, 12 (10), 1733.
https://doi.org/10.3390/nano12101733

[55]. Mohd Yusof, H.; Abdul Rahman, N.; Mohamad, R.; Zaidan, U. H.; Samsudin, A. A. Optimization of biosynthesis zinc oxide nanoparticles: Desirability-function based response surface methodology, physicochemical characteristics, and its antioxidant properties. OpenNano 2022, 8, 100106.
https://doi.org/10.1016/j.onano.2022.100106

[56]. Mazloom, F.; Masjedi-Arani, M.; Ghiyasiyan-Arani, M.; Salavati-Niasari, M. Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 2016, 214, 46-53.
https://doi.org/10.1016/j.molliq.2015.11.033

[57]. Ghaedi, M.; Ghaedi, A.; Mirtamizdoust, B.; Agarwal, S.; Gupta, V. K. Simple and facile sonochemical synthesis of lead oxide nanoparticles loaded activated carbon and its application for methyl orange removal from aqueous phase. J. Mol. Liq. 2016, 213, 48-57.
https://doi.org/10.1016/j.molliq.2015.09.051

[58]. Shaterian, M.; Enhessari, M.; Rabbani, D.; Asghari, M.; Salavati-Niasari, M. Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles. Appl. Surf. Sci. 2014, 318, 213-217.
https://doi.org/10.1016/j.apsusc.2014.03.087

[59]. Raja, P.; Bensimon, M.; Kulik, A.; Foschia, R.; Laub, D.; Albers, P.; Renganathan, R.; Kiwi, J. Dynamics and characterization of an innovative Raschig rings-TiO2 composite photocatalyst. J. Mol. Catal. A: Chem. 2005, 237 (1-2), 215-223.
https://doi.org/10.1016/j.molcata.2005.04.060

[60]. Han, D.; Sun, J.; Ge, J.; Wang, C.; Hu, P.; Liu, Y. Cross-linked proton exchange membrane covalently bonded with silicotungstic acid for enhanced proton conductivity. Int. J. Hydrog. Energy 2024, 90, 1300-1312.
https://doi.org/10.1016/j.ijhydene.2024.10.175

[61]. Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Amiri, O.; Hassanpour, M. Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli. J. Mol. Liq. 2017, 241, 1114-1119.
https://doi.org/10.1016/j.molliq.2017.06.106

[62]. Diez-Orejas, R.; Feito, M. J.; Cicuéndez, M.; Casarrubios, L.; Rojo, J. M.; Portolés, M. T. Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids Surf. B: Biointerfaces 2018, 171, 250-259.
https://doi.org/10.1016/j.colsurfb.2018.07.027

[63]. Abdu, M.; Tibebu, S.; Babaee, S.; Worku, A.; Msagati, T. A.; Nure, J. F. Optimization of photocatalytic degradation of Eriochrome Black T from aqueous solution using TiO2-biochar composite. Results Eng. 2025, 25, 104036.
https://doi.org/10.1016/j.rineng.2025.104036

[64]. Sugiyama, T.; Dabwan, A. H.; Katsumata, H.; Suzuki, T.; Kaneco, S. Optimization of Conditions for the Photocatalytic Degradation of EDTA in Aqueous Solution with Fe-Doped Titanium Dioxide. OJINM. 2014, 04 (03), 28-34.
https://doi.org/10.4236/ojinm.2014.43005

[65]. Yacob, A. R.; Kabo, K. S. Effect of Calcination on the Basic Strength of Surface Modified Nano-Zinc Oxide Characterised by FTIR and Back Titration Methods. AMR. 2015, 1107, 326-332.
https://doi.org/10.4028/www.scientific.net/AMR.1107.326

[66]. Mcgrother, S. C.; Gubbins, K. E. Constant pressure Gibbs ensemble Monte Carlo simulations of adsorption into narrow pores. Mol. Phys. 1999, 97 (8), 955-965.
https://doi.org/10.1080/00268979909482897

[67]. Panagiotopoulos, A. Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 1987, 61 (4), 813-826.
https://doi.org/10.1080/00268978700101491

[68]. Panagiotopoulos, A.; Quirke, N.; Stapleton, M.; Tildesley, D. Phase equilibria by simulation in the Gibbs ensemble. Mol. Phys. 1988, 63 (4), 527-545.
https://doi.org/10.1080/00268978800100361

[69]. Kupgan, G.; Liyana-Arachchi, T. P.; Colina, C. M. NLDFT Pore Size Distribution in Amorphous Microporous Materials. Langmuir 2017, 33 (42), 11138-11145.
https://doi.org/10.1021/acs.langmuir.7b01961

[70]. Shah, J. K.; Maginn, E. J. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. J. Chem. Phys. 2011, 135 (13), 134121.
https://doi.org/10.1063/1.3644939

[71]. Shah, J. K.; Marin‐Rimoldi, E.; Mullen, R. G.; Keene, B. P.; Khan, S.; Paluch, A. S.; Rai, N.; Romanielo, L. L.; Rosch, T. W.; Yoo, B.; Maginn, E. J. Cassandra: An open source Monte Carlo package for molecular simulation. J. Comput Chem 2017, 38 (19), 1727-1739.
https://doi.org/10.1002/jcc.24807

[72]. Potoff, J. J.; Siepmann, J. I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001, 47 (7), 1676-1682.
https://doi.org/10.1002/aic.690470719

[73]. Meena, P. L.; Surela, A. K.; Chhachhia, L. K.; Meena, J.; Meena, R. Investigation of the photocatalytic potential of C/N-co-doped ZnO nanorods produced via a mechano-thermal process. Nanoscale Adv. 2025, 7 (5), 1335-1352.
https://doi.org/10.1039/D4NA00890A

[74]. Tien, N. T.; Huyen, T. T.; Hien, L. P.; Huy, N. N. A study on the optimization of photocatalytic removal of enrofloxacin using TiO2 material. IOP. Conf. Ser.: Earth Environ. Sci. 2021, 652 (1), 012010.
https://doi.org/10.1088/1755-1315/652/1/012010

[75]. Yusuff, A. S.; Olateju, I. I.; Adesina, O. A. TiO2/anthill clay as a heterogeneous catalyst for solar photocatalytic degradation of textile wastewater: Catalyst characterization and optimization studies. Materialia 2019, 8, 100484.
https://doi.org/10.1016/j.mtla.2019.100484

[76]. Chaker, H.; Ameur, N.; Saidi-Bendahou, K.; Djennas, M.; Fourmentin, S. Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J. Environ. Chem. Eng. 2021, 9, 104584.
https://doi.org/10.1016/j.jece.2020.104584

[77]. Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12 (4), 214-219.
https://doi.org/10.1080/00224065.1980.11980968

[78]. Abd El-Kader, M. F. H.; Elabbasy, M. T.; Adeboye, A. A.; Zeariya, M. G. M.; Menazea, A. A. Morphological, structural and antibacterial behavior of eco-friendly of ZnO/TiO2 nanocomposite synthesized via Hibiscus rosa-sinensis extract. J. Mater. Res. Technol. 2021, 15, 2213-2220.
https://doi.org/10.1016/j.jmrt.2021.09.048

[79]. Munguti, L.; Dejene, F. Influence of annealing temperature on structural, optical and photocatalytic properties of ZnO-TiO2 composites for application in dye removal in water. Nano-struct. Nano-Objects 2020, 24, 100594.
https://doi.org/10.1016/j.nanoso.2020.100594

[80]. Jawad, A. H.; Alkarkhi, A. F.; Mubarak, N. S. Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: optimization using response surface methodology (RSM). Desalin. Water Treat. 2015, 56 (1), 161-172.
https://doi.org/10.1080/19443994.2014.934736

[81]. Gherbi, B.; Laouini, S. E.; Meneceur, S.; Bouafia, A.; Hemmami, H.; Tedjani, M. L.; Thiripuranathar, G.; Barhoum, A.; Menaa, F. Effect of pH Value on the Bandgap Energy and Particles Size for Biosynthesis of ZnO Nanoparticles: Efficiency for Photocatalytic Adsorption of Methyl Orange. Sustainability 2022, 14 (18), 11300.
https://doi.org/10.3390/su141811300

[82]. Singh, M.; Sinha, I.; Mandal, R. Role of pH in the green synthesis of silver nanoparticles. Mater. Lett. 2009, 63 (3-4), 425-427.
https://doi.org/10.1016/j.matlet.2008.10.067

[83]. Anigol, L. B.; Sajjan, V. P.; Gurubasavaraj, P. M.; Ganachari, S. V.; Patil, D. Study on the effect of pH on the biosynthesis of silver nanoparticles using Capparis moonii fruit extract: their applications in anticancer activity, biocompatibility and photocatalytic degradation. Chem. Pap. 2023, 77 (6), 3327-3345.
https://doi.org/10.1007/s11696-023-02707-5

[84]. Handayani, W.; Ningrum, A. S.; Imawan, C. The Role of pH in Synthesis Silver Nanoparticles Using Pometia pinnata (Matoa) Leaves Extract as Bioreductor. J. Phys.: Conf. Ser. 2020, 1428 (1), 012021.
https://doi.org/10.1088/1742-6596/1428/1/012021

[85]. Cervantes-Gaxiola, M.; Vázquez-González, F.; Rios-Iribe, E.; Méndez-Herrera, P.; Leyva, C. Effect of pH on the green synthesis of ZnO nanoparticles using Sorghum bicolor seed extract and their application in photocatalytic dye degradation. Mater. Lett. 2024, 372, 136982.
https://doi.org/10.1016/j.matlet.2024.136982

[86]. Miranda, A.; Akpobolokemi, T.; Chung, E.; Ren, G.; Raimi-Abraham, B. T. PH alteration in plant-mediated green synthesis and its resultant impact on antimicrobial properties of silver nanoparticles (AgNPs). Antibiotics (Basel) 2022, 11, 1592.
https://doi.org/10.3390/antibiotics11111592

[87]. Traiwatcharanon, P.; Timsorn, K.; Wongchoosuk, C. Effect of pH on the Green Synthesis of Silver Nanoparticles through Reduction with Pistiastratiotes L. Extract. AMR. 2015, 1131, 223-226.
https://doi.org/10.4028/www.scientific.net/AMR.1131.223

[88]. Suganthi, N.; Thangavel, S.; Kannan, K. Hibiscus subdariffa leaf extract mediated 2-D fern-like ZnO/TiO2 hierarchical nanoleaf for photocatalytic degradation. FlatChem 2020, 24, 100197.
https://doi.org/10.1016/j.flatc.2020.100197

[89]. Singh, J.; Kumar, S.; Rishikesh; Manna, A. K.; Soni, R. Fabrication of ZnO-TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Opt. Mater. 2020, 107, 110138.
https://doi.org/10.1016/j.optmat.2020.110138

[90]. Munguti, L.; Dejene, F. Influence of annealing temperature on structural, optical and photocatalytic properties of ZnO-TiO2 composites for application in dye removal in water. Nano-Struct. amp; Nano-Objects 2020, 24, 100594.
https://doi.org/10.1016/j.nanoso.2020.100594

[91]. Gupta, D.; Chauhan, R.; Kumar, N.; Singh, V.; Srivastava, V. C.; Mohanty, P.; Mandal, T. K. Enhancing photocatalytic degradation of quinoline by ZnO:TiO2 mixed oxide: Optimization of operating parameters and mechanistic study. J. Environ. Manag. 2020, 258, 110032.
https://doi.org/10.1016/j.jenvman.2019.110032

[92]. Pan, L.; Shen, G.-Q.; Zhang, J.-W.; Wei, X.-C.; Wang, L.; Zou, J.-J.; Zhang, X. TiO2-ZnO composite sphere decorated with ZnO clusters for effective charge isolation in photocatalysis. Ind. Eng. Chem. Res. 2015, 54, 7226-7232.
https://doi.org/10.1021/acs.iecr.5b01471

[93]. Gondal, M. A.; Ilyas, A. M.; Baig, U. Pulsed laser ablation in liquid synthesis of ZnO/TiO 2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance. Ceram. Int. 2016, 42, 13151-13160.
https://doi.org/10.1016/j.ceramint.2016.05.104

[94]. Gholami, M.; Shirzad-Siboni, M.; Farzadkia, M.; Yang, J. Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon). Desalin. Water Treat. 2016, 57 (29), 13632-13644.
https://doi.org/10.1080/19443994.2015.1060541

[95]. Sun, W.; Meng, S.; Zhang, S.; Zheng, X.; Ye, X.; Fu, X.; Chen, S. Insight into the transfer mechanisms of photogenerated carriers for heterojunction photocatalysts with the analogous positions of valence band and conduction band: A case study of ZnO/TiO2. J. Phys. Chem. C Nanomater. Interfaces 2018, 122, 15409-15420.
https://doi.org/10.1021/acs.jpcc.8b03753

[96]. Das, A.; Kumar, P. M.; Bhagavathiachari, M.; Nair, R. G. Hierarchical ZnO-TiO2 nanoheterojunction: A strategy driven approach to boost the photocatalytic performance through the synergy of improved surface area and interfacial charge transport. Appl. Surf. Sci. 2020, 534, 147321.
https://doi.org/10.1016/j.apsusc.2020.147321

[97]. El Mragui, A.; Daou, I.; Zegaoui, O. Influence of the preparation method and ZnO/(ZnO + TiO2) weight ratio on the physicochemical and photocatalytic properties of ZnO-TiO2 nanomaterials. Catal. Today 2019, 321-322, 41-51.
https://doi.org/10.1016/j.cattod.2018.01.016

[98]. Kwiatkowski, M.; Chassagnon, R.; Heintz, O.; Geoffroy, N.; Skompska, M.; Bezverkhyy, I. Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism. Appl. Catal. B: Environ. 2017, 204, 200-208.
https://doi.org/10.1016/j.apcatb.2016.11.030

[99]. Li, X.; Wang, C.; Xia, N.; Jiang, M.; Liu, R.; Huang, J.; Li, Q.; Luo, Z.; Liu, L.; Xu, W.; Fang, D. Novel ZnO-TiO 2 nanocomposite arrays on Ti fabric for enhanced photocatalytic application. J. Mol. Struct. 2017, 1148, 347-355.
https://doi.org/10.1016/j.molstruc.2017.07.030

[100]. Ramos, P. G.; Flores, E.; Sánchez, L. A.; Candal, R. J.; Hojamberdiev, M.; Estrada, W.; Rodriguez, J. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO 2 nanostructures fabricated by an electrostatically modified electrospinning. Appl. Surf. Sci. 2017, 426, 844-851.
https://doi.org/10.1016/j.apsusc.2017.07.218

[101]. Abd El-Kader, M.; Elabbasy, M.; Adeboye, A. A.; Zeariya, M. G.; Menazea, A. Morphological, structural and antibacterial behavior of eco-friendly of ZnO/TiO2 nanocomposite synthesized via Hibiscus rosa-sinensis extract. J. Mater. Res. Technol. 2021, 15, 2213-2220.
https://doi.org/10.1016/j.jmrt.2021.09.048

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).