European Journal of Chemistry

Local structure and optical absorption of Mn2+ doped Cs2SO4 single crystals

Crossmark


Main Article Content

Maroj Bharati
Vikram Singh
Ram Kripal

Abstract

Using perturbation theory and the superposition model, the splitting parameters for the zero field of Mn2+ doped crystals of Cs2SO4 are determined. When the local distortion is included in the computation, the estimated parameters match fairly well with the experimental ones. Theoretical evidence corroborates the experimental finding that the Mn2+ ion substitutes at the Cs+ site in Cs2SO4. The crystal's optical spectra are computed by the diagonalization of a complete Hamiltonian in the coupling scheme of the intermediate crystal-field, using the crystal field parameters obtained from the superposition model and the crystal field analysis program. The calculated and experimental band positions agree fairly well. Consequently, the results of the experiment are confirmed by theoretical analysis.


icon graph This Abstract was viewed 70 times | icon graph Article PDF downloaded 19 times

How to Cite
(1)
Bharati, M.; Singh, V.; Kripal, R. Local Structure and Optical Absorption of Mn2+ Doped Cs2SO4 Single Crystals. Eur. J. Chem. 2025, 16, 287-291.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Weil, J. A.; Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed.; Wiley-Interscience: Newy York, 2007.
https://doi.org/10.1002/0470084987

[2]. Mabbs, F. E.; Collison, D. Electron Paramagnetic Resonance of Transition Metal Compounds; Elsevier Science: London, England, 1992.

[3]. Krishna, R. M.; Seth, V. P.; Gupta, S. K.; Prakash, D.; Chand, I.; Lakshmana Rao, J. EPR of Mn2+-Ion-Doped Single Crystals of Mg[C4H3O4]2·6H2O. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53 (2), 253-258.
https://doi.org/10.1016/S1386-1425(97)83029-6

[4]. Rathee, S. P.; Hooda, S. S. EPR and superposition-model analysis of zero-field splitting parameters for Mn2+ doped in ZnNbOF5.6(H2O) and CoNbOF5.6(H2O) single crystals. Indian. J. Phys. 2024, 99 (1), 145-148.
https://doi.org/10.1007/s12648-024-03268-3

[5]. Halder, D.; Jana, Y.; Piwowarska, D.; Gnutek, P.; Rudowicz, C. Tailoring single-ion magnet properties of coordination polymer C11H18DyN3O9 (Dy-CP) using the radial effective charge model (RECM) and superposition model (SPM). Phys. Chem. Chem. Phys. 2024, 26 (29), 19947-19959.
https://doi.org/10.1039/D4CP01861C

[6]. Rudowicz, C.; Gnutek, P.; Açikgöz, M. Superposition model in electron magnetic resonance spectroscopy - a primer for experimentalists with illustrative applications and literature database. Applied Spectroscopy Reviews 2019, 54 (8), 673-718.
https://doi.org/10.1080/05704928.2018.1494601

[7]. Abragam, A.; Bleaney, B.; Abraham, A. Electron Paramagnetic Resonance of Transition Ions; Dover Publications: Mineola, NY, 1986.

[8]. Bharati, M., Singh, V., Kripal, M. Local Structure and Optical Studies of Mn2+ Doped [NH4][Zn(HCOO)3] Hybrid Formate Single Crystals. International Journal of Engineering Research and Development 2024, 20 (2), 65-72, https://www.ijerd.com/paper/vol20-issue2/I20026572.pdf

[9]. Pilbrow, J. R. Transition Ion Electron Paramagnetic Resonance; Clarendon Press: Oxford, England, 1991.

[10]. Wybourne, B. G. Spectroscopic Properties of Rare Earths; John Wiley & Sons: Nashville, TN, 1965.
https://doi.org/10.1063/1.3047727

[11]. Mulak, J.; Gajek, Z. The Effective Crystal Field Potential; Elsevier Science & Technology, 2000.

[12]. Boča, R. Zero-field splitting in metal complexes. Coordination Chemistry Reviews 2004, 248 (9-10), 757-815.
https://doi.org/10.1016/j.ccr.2004.03.001

[13]. Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis, 2013th ed.; Avram, N. M., Brik, M. G., Eds.; Springer: Berlin, Germany, 2013.

[14]. Brik, M.; Avram, N.; Avram, C. Crystal Field Analysis of Cr3+Energy Levels in LiGa5O8Spinel. Acta. Phys. Pol. A 2007, 112 (5), 1055-1060.
https://doi.org/10.12693/APhysPolA.112.1055

[15]. Newman, D. J.; Ng, B. The superposition model of crystal fields. Rep. Prog. Phys. 1989, 52 (6), 699-762.
https://doi.org/10.1088/0034-4885/52/6/002

[16]. Newman, D. J.; Siegel, E. Superposition model analysis of Fe3+and Mn2+spin-Hamiltonian parameters. J. Phys. C: Solid. State. Phys. 1976, 9 (23), 4285-4292.
https://doi.org/10.1088/0022-3719/9/23/013

[17]. Yeung, Y. Y. Local distortion and zero-field splittings of 3d5ions in oxide crystals. J. Phys. C: Solid. State. Phys. 1988, 21 (13), 2453-2461.
https://doi.org/10.1088/0022-3719/21/13/010

[18]. Bronzino, J. D. Biomedical Engineering Handbook, Volume II; CRC Press: Boca Raton, FL, 1999.

[19]. Nord, A. G.; Holt, S. L.; Cavalito, F.; Watson, K. J.; Sandström, M. The Crystal Structure of Cesium Sulfate, beta-Cs2SO4. Acta. Chem. Scand. 1976, 30a, 198-202.
https://doi.org/10.3891/acta.chem.scand.30a-0198

[20]. Jagannadham, A. V.; Venkateswarlu, P. Electron paramagnetic resonance of mn2+ in single crystals of Cesium Sulphate. Proc. Indian. Acad. Sci. 1971, 74 (1), 34-52.
https://doi.org/10.1007/BF03047111

[21]. Yu Wan-Lun,; Zhao Min-Guang, Spin-Hamiltonian parameters ofstate6ions. Phys. Rev. B 1988, 37 (16), 9254-9267.
https://doi.org/10.1103/PhysRevB.37.9254

[22]. Aromí, G.; Brechin, E. K. Synthesis of 3d Metallic Single-Molecule Magnets. In Structure and Bonding; Springer-Verlag: Berlin/Heidelberg, 2006; pp 1-67.
https://doi.org/10.1007/430_022

[23]. Coulon, C.; Miyasaka, H.; Clérac, R. Single-Chain Magnets:Theoretical Approach and Experimental Systems. Structure and Bonding 2006, 163-206.
https://doi.org/10.1007/430_030

[24]. Murrie, M. Cobalt(ii) single-molecule magnets. Chem. Soc. Rev. 2010, 39 (6), 1986.
https://doi.org/10.1039/b913279c

[25]. van Wüllen, C. Magnetic anisotropy through cooperativity in multinuclear transition metal complexes: theoretical investigation of an anisotropic exchange mechanism. Molecular Physics 2013, 111 (16-17), 2392-2397.
https://doi.org/10.1080/00268976.2013.796069

[26]. Ogg, A. XXXIV.The crystal structure of the isomorphous sulphates of potassium, ammonium, rubidium, and cæsium. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 1928, 5 (28), 354-367.
https://doi.org/10.1080/14786440208564474

[27]. Radnell, C. J.; Pilbrow, J. R.; Subramanian, S.; Rogers, M. T. Electron paramagnetic resonance of Fe3+ ions in (NH4)2SbF5. The Journal of Chemica. Physics 1975, 62 (12), 4948-4952.
https://doi.org/10.1063/1.430410

[28]. Rudowicz, C.; Bramley, R. On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. The Journal of Chemical Physics 1985, 83 (10), 5192-5197.
https://doi.org/10.1063/1.449731

[29]. Figgis, B. N.; Hitchman, M. A. Ligand Field Theory and Its Applications; John Wiley & Sons: Nashville, TN, 1999.

[30]. Yeom, T. H.; Choh, S. H.; Du, M. L.; Jang, M. S. EPR study ofFe3+impurities in crystalline BiVO4. Phys. Rev. B. 1996, 53 (6), 3415-3421.
https://doi.org/10.1103/PhysRevB.53.3415

[31]. Yeom, T. H.; Choh, S. H.; Du, M. L. A theoretical investigation of the zero-field splitting parameters for an Mn2+centre in a BiVO4 single crystal. J. Phys.: Condens. Matter. 1993, 5 (13), 2017-2024.
https://doi.org/10.1088/0953-8984/5/13/017

[32]. Jørgensen, C. K. Modern Aspects of Ligand Field Theory; 1971.

[33]. Purandar, K., Laksmana Rao, J., Lakshman, S.V.J. Optical Absorption Spectrum of Mn2+ in Zinc Cesium Sulphte Hexahydrate. Acta Phys. Slov. 1984, 34 (4), 195-207 http://www.physics.sk/aps/pubs/1984/ aps_1984_34_4_195.pdf

[34]. Crystal Field Handbook; Newman, D. J., Ng, B., Eds.; Cambridge University Press: Cambridge, England, 2011.

[35]. Edgar, A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts. J. Phys. C: Solid. State. Phys. 1976, 9 (23), 4303-4314.
https://doi.org/10.1088/0022-3719/9/23/015

[36]. Açıkgöz, M.; Kripal, R.; Misra, M. G.; Yadav, A. K.; Gnutek, P.; Rudowicz, C. Theoretical analysis of crystal field parameters and zero field splitting parameters for Mn2+ ions in tetramethylammonium tetrachlorozincate (TMATC-Zn). Polyhedron 2023, 235, 116341.
https://doi.org/10.1016/j.poly.2023.116341

[37]. Yeung, Y.; Rudowicz, C. Crystal Field Energy Levels and State Vectors for the 3dN Ions at Orthorhombic or Higher Symmetry Sites. Journal of Computational Physics 1993, 109 (1), 150-152.
https://doi.org/10.1006/jcph.1993.1206

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).