European Journal of Chemistry

Structural and surface properties of polyvinylpyrrolidone and aloe vera - capped iron oxide nanoparticles: Application in the photocatalytic degradation of methylene blue

Crossmark


Main Article Content

Rene Njike
Adrien Pamen Yepseu
Cyrille Ghislain Fotsop
Giscard Doungmo
Katia Nono Nchimi
Peter Teke Ndifon

Abstract

Iron oxide nanoparticles were synthesized by the chemical precipitation method at 25 and 80 °C using polyvinylpyrrolidone (PVP) and aloe vera/polyvinyl pyrrolidone (AP) as capping agents. FTIR bands at 1584-1455 and 522-561 cm-1 confirm the formation of PVP- and AP-capped iron oxide nanoparticles. The formation of magnetite and hematite phases was confirmed by powder X-ray Diffraction patterns. The elemental composition of the synthesized particles was confirmed by EDX. SEM analysis revealed a mixed morphology of spherical and irregular-shaped particles of average crystallite sizes ranging from 9 to 58 nm, as estimated from XRD and SEM measurements. Both PVP- and AP-capped nanoparticles were used as catalysts for the photocatalytic degradation of methylene blue under ultraviolet (UV) irradiation. After 180 min of irradiation with 20 mg of photocatalyst, degradation efficiencies of 53-82% were obtained, with AP-capped nanoparticles being more efficient, suggesting their potential as effective materials for the photocatalytic degradation of toxic dyes in wastewater.


icon graph This Abstract was viewed 135 times | icon graph Article PDF downloaded 53 times icon graph Article SUPP. MATER. downloaded 0 times

How to Cite
(1)
Njike, R.; Yepseu, A. P.; Fotsop, C. G.; Doungmo, G.; Nchimi, K. N.; Ndifon, P. T. Structural and Surface Properties of Polyvinylpyrrolidone and Aloe Vera - Capped Iron Oxide Nanoparticles: Application in the Photocatalytic Degradation of Methylene Blue. Eur. J. Chem. 2025, 16, 233-241.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Herlekar, M.; Barve, S.; Kumar, R. Plant-Mediated Green Synthesis of Iron Nanoparticles. J. Nanoparticles 2014, 2014, 1-9.
https://doi.org/10.1155/2014/140614

[2]. Sanchez-Moreno, P.; Ortega-Vinuesa, J. L.; Peula-Garcia, J. M.; Marchal, J. A.; Boulaiz, H. Smart Drug-Delivery Systems for Cancer Nanotherapy. CDT. 2018, 19 (4), 339-359.
https://doi.org/10.2174/1389450117666160527142544

[3]. Jana, T. K.; Pal, A.; Mandal, A. K.; Sarwar, S.; Chakrabarti, P.; Chatterjee, K. Photocatalytic and antibacterial performance of α-Fe2 O3 nanostructures. ChemistrySelect 2017, 2, 3068-3077.
https://doi.org/10.1002/slct.201700294

[4]. Machala, L.; Zboril, R.; Gedanken, A. Amorphous Iron(III) Oxide - A Review. ChemInform. 2007, 38 (28), 4003-4018 https://doi.org/10.1002/chin.200728192.
https://doi.org/10.1002/chin.200728192

[5]. Montiel Schneider, M. G.; Martín, M. J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022, 14 (1), 204.
https://doi.org/10.3390/pharmaceutics14010204

[6]. Tharani, K.; Jegatha Christy, A.; Sagadevan, S.; Nehru, L. Photocatalytic and antibacterial performance of iron oxide nanoparticles formed by the combustion method. Chemical. Physics. Letters 2021, 771, 138524. duplicated
https://doi.org/10.1016/j.cplett.2021.138524

[7]. Pecharroman, C.; Gonzalez-Carreao, T.; Iglesias, J. The Infrared Dielectric Properties of Maghemite, -Fe2O3, from Reflectance Measurement on Pressed Powders. Phys. Chem. Miner. 1995, 22 (1). https://doi.org/10.1007/BF00202677
https://doi.org/10.1007/BF00202677

[8]. Criveanu, A.; Dumitrache, F.; Fleaca, C.; Gavrila-Florescu, L.; Lungu, I.; Morjan, I. P.; Socoliuc, V.; Prodan, G. Chitosan-coated iron oxide nanoparticles obtained by laser pyrolysis. Applied Surface Science Advances 2023, 15, 100405.
https://doi.org/10.1016/j.apsadv.2023.100405

[9]. Noqta, O. A.; Aziz, A. A.; Usman, A. I. Synthesis of PVP Coated Superparamagnetic Iron Oxide Nanoparticles with a High Saturation Magnetization. SSP. 2019, 290, 301-306.
https://doi.org/10.4028/www.scientific.net/SSP.290.301

[10]. Dasgupta, N.; Nayak, M. A.; Gauthier, M. Starch-stabilized iron oxide nanoparticles for the photocatalytic degradation of methylene blue. Polysaccharides 2022, 3, 655-670.
https://doi.org/10.3390/polysaccharides3030038

[11]. Yaou Balarabe, B.; Illiassou Oumarou, M. N.; Koroney, A. S.; Adjama, I.; Ibrahim Baraze, A. R. Photo-Oxidation of Organic Dye by Fe2O3 Nanoparticles: Catalyst, Electron Acceptor, and Polyurethane Membrane (PU-Fe2O3) Effects. J. Nanotechnology 2023, 2023, 1-12.
https://doi.org/10.1155/2023/1292762

[12]. Mahlaule-Glory, L. M.; Mapetla, S.; Makofane, A.; Mathipa, M. M.; Hintsho-Mbita, N. C. Biosynthesis of iron oxide nanoparticles for the degradation of methylene blue dye, sulfisoxazole antibiotic and removal of bacteria from real water. Heliyon 2022, 8 (9), e10536.
https://doi.org/10.1016/j.heliyon.2022.e10536

[13]. Silva, M. F.; de Oliveira, L. A.; Ciciliati, M. A.; Lima, M. K.; Ivashita, F. F.; Fernandes de Oliveira, D. M.; Hechenleitner, A. A.; Pineda, E. A. The Effects and Role of Polyvinylpyrrolidone on the Size and Phase Composition of Iron Oxide Nanoparticles Prepared by a Modified Sol-Gel Method. J. Nanomaterials 2017, 2017, 1-10.
https://doi.org/10.1155/2017/7939727

[14]. Marand, Z. R.; Rashid Farimani, M. H.; Shahtahmasebi, N. Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 2014, 1, 238-247. https://doi.org/10.7508/NMJ.2015.04.004

[15]. Teng, Y.; Li, Y.; Li, Y.; Song, Q. Preparation of Fe3O4/PVP magnetic nanofibers via in situ method with electrospinning. J. Phys.: Conf. Ser. 2020, 1549 (3), 032087.
https://doi.org/10.1088/1742-6596/1549/3/032087

[16]. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238 (5358), 37-38.
https://doi.org/10.1038/238037a0

[17]. Fu, C.; Ravindra, N. M. Magnetic iron oxide nanoparticles: synthesis and applications. Bioinspired, Biomimetic Nanobiomaterials 2012, 1 (4), 229-244.
https://doi.org/10.1680/bbn.12.00014

[18]. Shaikh, I. A.; Shah, D. V. Synthesis of PVP capped superparamagnetic iron oxide (Fe3O4) nanoparticles in the inert atmosphere - An ideal candidate for hyperthermia. AIP. Conference Proceedings 2019, 2162, 020113.
https://doi.org/10.1063/1.5130323

[19]. Jeevanandam, J.; Chan, Y. S.; Danquah, M. K. Biosynthesis of Metal and Metal Oxide Nanoparticles. ChemBioEng. Reviews 2016, 3 (2), 55-67.
https://doi.org/10.1002/cben.201500018

[20]. Nagajyothi, P. C.; Prabhakar Vattikuti, S. V.; Devarayapalli, K. C.; Yoo, K.; Shim, J.; Sreekanth, T. V. Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Critical Reviews Environmenta. Science and. Technology 2019, 50 (24), 2617-2723.
https://doi.org/10.1080/10643389.2019.1705103

[21]. Ali, K.; Ahmed, B.; Khan, M. S.; Musarrat, J. Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe2O3) nanoparticles. Journal of Photochemistry and Photobiology B: Biology 2018, 188, 146-158.
https://doi.org/10.1016/j.jphotobiol.2018.09.017

[22]. Phumying, S.; Labuayai, S.; Thomas, C.; Amornkitbamrung, V.; Swatsitang, E.; Maensiri, S. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl. Phys. A 2012, 111 (4), 1187-1193.
https://doi.org/10.1007/s00339-012-7340-5

[23]. Rahmani, R.; Gharanfoli, M.; Gholamin, M.; Darroudi, M.; Chamani, J.; Sadri, K.; Hashemzadeh, A. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceramics International 2020, 46 (3), 3051-3058.
https://doi.org/10.1016/j.ceramint.2019.10.005

[24]. Nchimi Nono, K.; Vahl, A.; Terraschke, H. Towards High-Performance Photo-Fenton Degradation of Organic Pollutants with Magnetite-Silver Composites: Synthesis, Catalytic Reactions and in Situ Insights. Nanomaterials (Basel) 2024, 14 (10), 849.
https://doi.org/10.3390/nano14100849

[25]. Yepseu, A. P.; Girardet, T.; Nyamen, L. D.; Fleutot, S.; Ketchemen, K. I.; Cleymand, F.; Ndifon, P. T. Copper (II) Heterocyclic Thiosemicarbazone Complexes as Single-Source Precursors for the Preparation of Cu9S5 Nanoparticles: Application in Photocatalytic Degradation of Methylene Blue. Catalysts 2022, 12 (1), 61.
https://doi.org/10.3390/catal12010061

[26]. Morales Morales, J. A. Synthesis of Hematite α-Fe2O3 Nano Powders by the Controlled Precipitation Method / Síntesis de Nano Polvos de Hematita α-Fe2O3 Por El Método de Precipitación. Cienc. Desarro. 2017, 8 (1), 99-107.
https://doi.org/10.19053/01217488.v8.n1.2017.4494

[27]. Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics 2017, 7, 3007-3015.
https://doi.org/10.1016/j.rinp.2017.07.066

[28]. Pandey, G.; Singh, S.; Hitkari, G. Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process. Int. Nano. Lett. 2018, 8 (2), 111-121.
https://doi.org/10.1007/s40089-018-0234-6

[29]. Itoh, H.; Sugimoto, T. Systematic Control of Size, Shape, Structure, and Magnetic Properties of Uniform Magnetite and Maghemite Particles. J. Colloid Interface Sci. 2003, 265 (2), 283-295.
https://doi.org/10.1016/S0021-9797(03)00511-3

[30]. Agarwal, T.; A. Gupta, K.; Alam, S.; G. H. Zaidi, M. Fabrication and Characterization of Iron Oxide Filled Polyvinyl Pyrrolidone Nanocomposites. Cmaterials. 2012, 2 (3), 17-21.
https://doi.org/10.5923/j.cmaterials.20120203.01

[31]. Zein, R.; Alghoraibi, I.; Soukkarieh, C.; Ismail, M. T.; Alahmad, A. Influence of Polyvinylpyrrolidone Concentration on Properties and Anti-Bacterial Activity of Green Synthesized Silver Nanoparticles. Micromachines 2022, 13 (5), 777.
https://doi.org/10.3390/mi13050777

[32]. Kahramanoğlu, I.; Chen, C.; Chen, J.; Wan, C. Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. Agronomy 2019, 9 (12), 831.
https://doi.org/10.3390/agronomy9120831

[33]. Mandal, B. K.; Biswas, A.; Barman, S.; Das, R.; Debnath, P. S. Structural study of iron oxide nanoparticles (INPs) synthesized in aloe vera plant extract. AIP. Conference. Proceedings 2020, 2220, 020185.
https://doi.org/10.1063/5.0001998

[34]. Yazid, N. A.; Joon, Y. C. Co-precipitation synthesis of magnetic nanoparticles for efficient removal of heavy metal from synthetic wastewater. AIP. Conference. Proceedings 2019, https://doi.org/10.1063/1.5117079.
https://doi.org/10.1063/1.5117079

[35]. Huerta, C.; Freire, M.; Cardemil, L. Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions. Plant. Cell. Rep. 2012, 32 (2), 293-307.
https://doi.org/10.1007/s00299-012-1363-4

[36]. Sing, K. S. W.; Williams, R. T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorp. Sci. Technol. 2004, 22 (10), 773-782.
https://doi.org/10.1260/0263617053499032

[37]. AlAbduljabbar, F. A.; Haider, S.; Ali, F. A.; Alghyamah, A. A.; Almasry, W. A.; Patel, R.; Mujtaba, I. M. Efficient Photocatalytic Degradation of Organic Pollutant in Wastewater by Electrospun Functionally Modified Polyacrylonitrile Nanofibers Membrane Anchoring TiO2 Nanostructured. Membranes 2021, 11 (10), 785.
https://doi.org/10.3390/membranes11100785

[38]. Deotale, A. J.; Nandedkar, R. Correlation between Particle Size, Strain and Band Gap of Iron Oxide Nanoparticles. Materials Today: Proceedings 2016, 3 (6), 2069-2076.
https://doi.org/10.1016/j.matpr.2016.04.110

[39]. Kumar, A. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Int. J. Mater Sci. Eng. MSEIJ. 2017, 1 (3), https://doi.org/10.15406/mseij.2017.01.00018.
https://doi.org/10.15406/mseij.2017.01.00018

[40]. Ahmad, W.; Khan, A. U.; Shams, S.; Qin, L.; Yuan, Q.; Ahmad, A.; Wei, Y.; Khan, Z. U.; Ullah, S.; Rahman, A. U. Eco-benign approach to synthesize spherical iron oxide nanoparticles: A new insight in photocatalytic and biomedical applications. Journal of Photochemistry and Photobiolog. B: Biology 2020, 205, 111821.
https://doi.org/10.1016/j.jphotobiol.2020.111821

[41]. Ganeshraja, A. S.; Rajkumar, K.; Zhu, K.; Li, X.; Thirumurugan, S.; Xu, W.; Zhang, J.; Yang, M.; Anbalagan, K.; Wang, J. Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. RSC. Adv. 2016, 6 (76), 72791-72802.
https://doi.org/10.1039/C6RA13212J

[42]. Šmitran, A.; Jelić, D.; Pržulj, S.; Vračević, S.; Gajić, D.; Malinović, M.; Božić, L. Study of iron oxide nanoparticles doped with copper: antimicrobal and photocatalytical activity. Contemp. Mater. CM. 2020, 11 (2), 93-101 https://doi.org/10.7251/COMEN2002093J.
https://doi.org/10.7251/COMEN2002093J

[43]. Wu, W.; Xiao, X.; Zhang, S.; Ren, F.; Jiang, C. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale. Res. Lett. 2011, 6 (1), https://doi.org/10.1186/1556-276X-6-533.
https://doi.org/10.1186/1556-276X-6-533

[44]. Duy Vu Nguyen, K.; Dang Nguyen Vo, K. Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye. AIMS. Materials Science 2020, 7 (3), 288-301.
https://doi.org/10.3934/matersci.2020.3.288

Supporting Agencies

Fond de modernization et d’appui a la recherche' allocation to Higher Education Teachers of Cameroon (KNN and PTN), Cameroon.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

License Terms

by-nc

Copyright © 2025 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).