European Journal of Chemistry 2011, 2(1), 1-7 | doi: | Get rights and content

Issue cover


Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines

Lígia Rebelo Gomes (1) , Luís Manuel Neves Belchior Faia Santos (2) , José Beleza (3) , John Nicolson Low (4,*)

(1) CIAGEB-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Porto, P-4200-150, Portugal
(2) Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, P-4169-007, Portugal
(3) CIAGEB-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Porto, P-4200-150, Portugal
(4) Department of Chemistry, University of Aberdeen, AB24 3UE, Scotland
(*) Corresponding Author

Received: 17 Nov 2010 | Revised: 25 Jan 2011 | Accepted: 11 Jan 2011 | Published: 28 Mar 2011 | Issue Date: March 2011


Benzodiazepines are drugs used for treatment of several central nervous system disorders, such as anxiety and sleep. In spite of their wide and popular usage in clinics, the mechanism explaining why a certain pharmacological activity is superimposed onto another for a given benzodiazepine remains unclear. The knowledge of the conformation of benzodiazepines and their electronic charge distribution at molecular surfaces may give new insights into the pharmaco-benzodiazepine receptor interactions, contributing to the improvement of the existing models. In the present study, the solid state geometric and conformational parameters of the available X-ray benzodiazepine structures were analyzed and reviewed. The electronic features of two groups of benzodiazepines with different substituents at C7 and C2’ positions were studied by DFT quantum chemical calculations. The conformations of the molecules with optimized geometry were also analyzed. The relative charge distribution around the benzodiazepinic rings and electrostatic potential mapped on electronic density surfaces were obtained. The ring geometric parameters for the diazepine moiety in 1,4-benzodiazepines, do not vary significantly except for a few compounds in which steric and/or intermolecular interactions play a part. The benzodiazepine ring assumes a pseudo-symmetrical boat conformation and the torsion angle around the C5-Ph bond varies depending on the nature of the substituent on C2’. Also, the presence of the nitro or chloride substituent on the C7 position and the presence of a fluorine atom on the C2’ position significantly alter the relative charge distributions at the attached carbon atoms and the topology of the surface electrostatic potential.



Benzodiazepine; DFT; Structure characterization; X-ray; Fluoro; Isoelectronic potential surfaces

Full Text:

PDF    Open Access

DOI: 10.5155/eurjchem.2.1.1-7.322

Links for Article

| | | | | | |

| | | | | | |

| | |

Related Articles

Article Metrics

icon graph This Abstract was viewed 1396 times | icon graph PDF Article downloaded 391 times

Funding information

Thanks are due to Fundação para o Ensino e Cultura Fernando Pessoa for financial support.



[1]. Archimede Rotondo, Roberta Ettari, Maria Zappalà, Carlo De Micheli, Enrico Rotondo
NMR characterization and conformational analysis of a potent papain-family cathepsin L-like cysteine protease inhibitor with different behaviour in polar and apolar media
Journal of Molecular Structure  1076, 337, 2014
DOI: 10.1016/j.molstruc.2014.07.046


[1]. Abraham, D. J. Nervous System Agents - Burger’s Medicinal Chemistry & Drug Discovery – 6th Ed., Wiley Interscience, John Wiley and Sons; Department of Medicinal Chemistry, School of Pharmacy Virginia Commonwealth, 2003, Vol. 6.

[2]. Kessler, R. C.; Frank, R. G. Psychol. Med. 1997, 27, 861-873.

[3]. Walley, E. J.; Beebe D. K.; Clark, J. L. Am. Fam. Physician. 1994, 50, 1745–1753.

[4]. Van Ameringen, M.; Mancini, C.; Farvolden, P.; Oakman J. Curr. Psychiatry Rep. 2000, 2, 358–366.

[5]. Davidson, J. R.; Potts, N. L. S.; Richichi, E. A. J. Clin. Psychopharmacol. 1993, 13, 423–428.

[6]. Gelernter, C. S.; Uhde, T. W.; Cimbolic, Peter; Arnkoff, D. B.; Vittone, Bernard J.; Tancer, M. E.; Bartko, J. J. Arch. Gen. Psychiatry. 1991, 48, 938–945.

[7]. Sternbach, L. H. J. Clin. Psychopharmacol. 1994, 14, 170–179.

[8]. Sanger, D. J.; Benavides, J.; Perrault, G.; Morel, E.; Cohen, C.; Joly, D.; Zivkovic, B. Neurosci. Biobehav. Rev. 1994, 18, 355–372.

[9]. Rudolph, U.; Crestani, F.; Möhler, H. Trends Pharmacol. Sci. 1999, 22, 188–194.

[10]. Mölher, H.; Crestani, F.; Rudolph, U. Curr. Opin. Pharmacol. 2001, 1, 22–25.

[11]. Da Settimo, F.; Taliani, S.; Trincavelli, M. L.; Montali, M.; Martini, C. Curr. Med. Chem. 2007, 14, 2680–2701.

[12]. Atack, J. R. Expert Opin. Investia. Drugs. 2005, 14, 601–618.

[13]. Allen, F. H. Acta Cryst. 2002, B58, 380–388.

[14]. Williams D. B.; Akabas M. H. Mol. Pharmacol. 2000, 58, 1129–1136.

[15]. Gaussian 03. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;. Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T. Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.

[16]. Becke A. D. J. Chem. Phys. 1997, 107, 8554–8560.

[17]. Lee, C.; Yang, W.; Parr, G. R. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 37, 785–789.

[18]. Hehre, W. J.; Random L.; Schleyer P. V. R.; Pople J. A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

[19]. Carpenter, J. E.; Weinhold, F. J. Mol. Struct. Theochem. 1998, 169, 41-62.

[20]. GaussView 3.0. Dennington II, R.; Keith, T.; Millam, J. GaussView, Version 4.1.2, Semichem., Inc., Shawnee Mission, KS, 2007. Available from: <>.

[21]. Razgulin, A. V.; Mecozzi, S. J. Med. Chem. 2006, 49, 7902–7906.

[22]. O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319.

[23]. Clayton, T.; Chen, J. L.; Ernst, M.; Richter, L.; Cromer, B. A.; Morton, C. J.; Ng, H.; Kaczorowski, C. C.; Helmstetter, F. J.; Furtmüller, R.; Ecker, G.; Parker, M. W.; Sieghart, W.; Cook, J. M. Curr. Med. Chem. 2007, 14, 26, 2755–2775.

[24]. Meréndez, J. C.; Avendaño C. Optimizacion de un protótipo. Correlationes cualitativas estrutura química – actividad biológica, in Avendaño C: Introdution a la química Farmaceutica, 2nd Ed. McGraw Hill, Madrid, 2001, pp. 87–88.

[25]. Breimer, D. D.; Jochemsen, R. Br. J. Clin. Pharmacol. 1983, 16, 277S–278S.
PMid:6140947 PMCid:1428230

[26]. Greenblatt, D. J.; Shader, R. I.; Koch-Weser, J. Ann. of Intern. Med. 1975, 83, 237–241.

[27]. Berlin, A.; Dahlstrom, H. Eur. J. Clin. Pharmacol. 1975, 9, 155–159.

[28]. Morishita, S. Hum. Psychopharmacol. 2009, 24, 191–198.

[29]. Mattila, M. A.; Larni, H. M. Drugs, 1980, 20, 353–374.

[30]. Hevers, W.; Lueddens, H. Mol. Neurobiol. 1998, 18, 35–86.

[31]. Hanson, S. M.; Czajkowski, C. J. Neurosci, 2008, 28, 3490–3499.
PMid:18367615 PMCid:2410040

Supporting information

The Supplementary Material for this article can be found online at: Supplementary files

How to cite

Gomes, L.; Santos, L.; Beleza, J.; Low, J. Eur. J. Chem. 2011, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322
Gomes, L.; Santos, L.; Beleza, J.; Low, J. Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines. Eur. J. Chem. 2011, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322
Gomes, L., Santos, L., Beleza, J., & Low, J. (2011). Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines. European Journal of Chemistry, 2(1), 1-7. doi:10.5155/eurjchem.2.1.1-7.322
Gomes, Lígia, Luís Manuel Neves Belchior Faia Santos, José Beleza, & John Nicolson Low. "Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines." European Journal of Chemistry [Online], 2.1 (2011): 1-7. Web. 27 Feb. 2021
Gomes, Lígia, Santos, Luís, Beleza, José, AND Low, John. "Structural and electronic effects of the C2’ substituent in 1,4–benzodiazepines" European Journal of Chemistry [Online], Volume 2 Number 1 (28 March 2011)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley

European Journal of Chemistry 2011, 2(1), 1-7 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c)

© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.