European Journal of Chemistry 2011, 2(2), 163-167 | doi: https://doi.org/10.5155/eurjchem.2.2.163-167.369 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols


Umar Ibrahim Gaya (1,*)

(1) Department of Pure and Industrial Chemistry, Bayero University Kano, 3011, Kano State, Nigeria
(*) Corresponding Author

Received: 09 Dec 2010 | Revised: 06 Feb 2011 | Accepted: 03 Mar 2011 | Published: 30 Jun 2011 | Issue Date: June 2011

Abstract


The present study compares for the first time the photocatalytic oxidation of three p-chlorophenols (4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol) in irradiated ZnO suspensions. The effect of operating parameters such as catalyst and concentration doses on the decomposition rate of these p-chlorinated compounds has been studied and optimized. The optimal feed concentration for each of the chlorinated phenolic compounds is 50 mg/L whereas the ZnO doses decreased as the number of chlorine substituent is increased. Kinetic profiles on the decomposition of chlorophenols over ZnO agreed with the pseudo-zeroeth order rate scheme with rate constants following the order 2,4,6-trichlorophenol > 2,4-dichlorophenol > 4-chlorophenol. The validity of the pseudo zero order model could be linked to the initial doses of the chlorophenols used vis-à-vis the catalyst. The study revealed stable intermediates of photocatalytic chlorophenol transformation by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) technique. A combined mechanism is given to account for the photocatalytic destruction of the chlorophenols.2_2_163_167_800

Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Oxidation; Mechanism; Chlorophenol; ZnO; Photodegradation; Intermediates

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.2.2.163-167.369

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1643 times | icon graph PDF Article downloaded 513 times


Citations

/


[1]. Zhenzhao Pei, Pei Wang, Zhiguo Li
Investigation of ZnTiO3/TiO2 composites and their application in photocatalysis
European Journal of Chemistry  10(1), 7, 2019
DOI: 10.5155/eurjchem.10.1.7-11.1824
/


[2]. Muktar Musa Ibrahim, Hamza Rabiu Sani, Khuzaifa Muhammad Yahuza, Aminu Hassan Yusuf, Ahmad Bello Bungudu
Response surface optimization and modeling of caffeine photocatalytic degradation using visible light responsive perovskite structured LaMnO3
European Journal of Chemistry  12(3), 289, 2021
DOI: 10.5155/eurjchem.12.3.289-298.2127
/


[3]. Najm Us Saqib, Rohana Adnan, Irfan Shah
Zeolite supported TiO2 with enhanced degradation efficiency for organic dye under household compact fluorescent light
Materials Research Express  6(9), 095506, 2019
DOI: 10.1088/2053-1591/ab2eb8
/


[4]. Sh. M. Khaliullin, V. D. Zhuravlev, L. V. Ermakova, L. Yu. Buldakova, M. Yu. Yanchenko, N. M. Porotnikova
Solution Combustion Synthesis of ZnO Using Binary Fuel (Glycine + Citric Acid)
International Journal of Self-Propagating High-Temperature Synthesis  28(4), 226, 2019
DOI: 10.3103/S1061386219040058
/


[5]. Reda M. Abdelhameed, Mohammed Abu-Elghait, Mahmoud El-Shahat
Engineering titanium-organic framework decorated silver molybdate and silver vanadate as antimicrobial, anticancer agents, and photo-induced hydroxylation reactions
Journal of Photochemistry and Photobiology A: Chemistry  423, 113572, 2022
DOI: 10.1016/j.jphotochem.2021.113572
/


[6]. R. T. Sapkal, S. S. Shinde, D. M. Sapkal, A. R. Babar, V. V. Shinde, C. B. Jalkute, A. V. Moholkar, K. Y. Rajpure, K. D. Sonawane, P. S. Patil, C. H. Bhosale
Photoelectrocatalytic activity of spray deposited ZnO thin films againstE. coliDavis
Materials Research Innovations  16(6), 417, 2012
DOI: 10.1179/1433075X12Y.0000000024
/


[7]. M. Ihsan Danish, Ishtiaq A. Qazi, Akif Zeb, Amir Habib, M. Ali Awan, Zahiruddin Khan
Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies
Journal of Nanomaterials  2013, 1, 2013
DOI: 10.1155/2013/873694
/


[8]. Najm us Saqib, Rohana Adnan, Irfan Shah
Modifications of pure and Ag doped TiO2 by pre-sulphated and calcination temperature treatments
Research on Chemical Intermediates  43(11), 6571, 2017
DOI: 10.1007/s11164-017-3005-5
/


[9]. Imogen C. Payne, Imogen McCarthy, Matthew J. Almond, John V. Baum, John W. Bond
The Effect of Light Exposure on the Degradation of Latent Fingerprints on Brass Surfaces: The Use of Silver Electroless Deposition as a Visualization Technique
Journal of Forensic Sciences  59(5), 1368, 2014
DOI: 10.1111/1556-4029.12524
/


[10]. Muhammad Bilal Tahir, Ghulam Nabi, M. Sagir, M. Rafique, Hussein Alrobei, Tasmia Nawaz, Abrar Inayat, Sajjad Hussain, Gul Naz, Khalid Iqbal, Muhammad Suleman Tahir
Role of CTF in Bi2WO6/ZnO photocatalysts for effective degradation and hydrogen energy evolution
International Journal of Hydrogen Energy  46(59), 30606, 2021
DOI: 10.1016/j.ijhydene.2021.02.059
/


[11]. A Adnan, S Notodarmodjo, Q Helmy
Arsenic removal in groundwater by UV based photocatalysis with immobilized ZnO-nanoparticle on ceramic plate
IOP Conference Series: Materials Science and Engineering  536(1), 012075, 2019
DOI: 10.1088/1757-899X/536/1/012075
/


[12]. Najm Us Saqib, Ajmal Khan, Israr Alam, Muhammad Rahim
Glass beads immobilized doped TiO2 NPs with enhanced adsorption efficiency for arsenic(III) from aqueous solution
SN Applied Sciences  2(4), , 2020
DOI: 10.1007/s42452-020-2207-4
/


References


[1]. Yin, D.; Hu, S.; Jin, H.; Yu, L. Chemosphere 2003, 52, 67-73.
doi:10.1016/S0045-6535(03)00273-X

[2]. Ichihashi, Y.; Matsumura, Y. J. Catal. 2001, 202, 427-429.
doi:10.1006/jcat.2001.3287

[3]. Sehlotho, N.; Nyokong, T. J. Mol. Catal. A: Chem. 2004, 219, 201-207.
doi:10.1016/j.molcata.2004.05.010

[4]. Amadelli, R.; Bregola, M.; Polo, E.; Carassiti, V.; Maldotti, A. J. Chem. Soc. Chem. Commun. 1992, 1355-1357.
doi:10.1039/c39920001355

[5]. Augugliaro, V.; Kisch, H.; Loddo, V.; Lόpez-Muñoz, M. J.; Márquez-Álvarez, C.; Palmisano, G.; Palmisano, L.; Parrino, F.; Yurdakal, S. Appl. Catal. A. 2008, 349, 182-188.
doi:10.1016/j.apcata.2008.07.032

[6]. Singh, H. K.; Saquib, M.; Haque, M. M.; Muneer, M.; Bahnemann, D. W. J. Mol. Catal. A: Chem. 2007, 264, 66-72.
doi:10.1016/j.molcata.2006.08.088

[7]. Li, S.; Ma, Z.; Zhang, J.; Wu, Y.; Gong, Y. Catal. Today. 2008, 139, 109-112.
doi:10.1016/j.cattod.2008.08.012

[8]. Anpo, M.; Kamat, P. V. (Eds.). Environmentally benign photocatalysts. Application of titanium oxide-based materials series: Nanostructure science and technology. 1st edition, Springer, 2010.

[9]. Alfano, O. M.; Cabrera, M. I., Cassano, A. E. J. Catal. 1997, 172, 370-379.
doi:10.1006/jcat.1997.1858

[10]. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C. 2000, 1, 1-21.
doi:10.1016/S1389-5567(00)00002-2

[11]. Turchi, C. S.; Ollis, D. F. J. Catal. 1990, 122, 178-192.
doi:10.1016/0021-9517(90)90269-P

[12]. Minero, C.; Aliberti, C.; Pelizzetti, E.; Terzian, R.; Serpone, N. Langmuir. 1991, 7, 928-936.
doi:10.1021/la00053a020

[13]. Gaya, U. I.; Abdullah, A. H.; Zainal, Z.; Hussein, M. Z. J. Hazard. Mater. 2009, 168, 57-63.
doi:10.1016/j.jhazmat.2009.01.130
PMid:19268454

[14]. Abdullah, A. H.; Giat, L. E.; Gaya, U. I. Surface and physicochemical properties of precipitation derived zinc oxide and its degradation to methyl orange, 12th Asian Chemical Congress (12ACC). Kuala Lumpur, Malaysia. August, 2007.

[15]. Brunauer, S.; Emmett, P. H; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319.
doi:10.1021/ja01269a023

[16]. Trikalitis, P. N.; Rangan, K. K.; Bakas, T.; Kanatzidis, M. G. Nature. 2001, 410, 671-674.
doi:10.1038/35070533
PMid:11287949

[17]. Tauc, J.; Menth, A. J. Non-Cryst. Solids. 1972, 8-10, 569-585.

[18]. Kako, T.; Kikugawa, N.; Ye, J. Catal. Today. 2008, 131, 197-202.
doi:10.1016/j.cattod.2007.10.094

[19]. Dodd, A. C.; McKinley, A. J.; Saunders, M.; Tsuzuki, T. J. Nanopart. Res. 2006, 8, 43-51.
doi:10.1007/s11051-005-5131-z

[20]. Gaya, U. I.; Abdullah, A. H.; Hussein, M. Z.; Zainal, Z. Desalination, 2010, 263, 172-182.
doi:10.1016/j.desal.2010.06.055

[21]. Marto, J.; Marcos, P. S; Trindade, T.; Labrincha, J. A. J. Hazard. Mater. 2009, 168, 57-63.
doi:10.1016/j.jhazmat.2009.01.130
PMid:19268454

[22]. Gaya, U. I.; Abdullah, A. H.; Zainal, Z.; Zobir, M. Int. J. Chem. 2010, 2, 180-193.

[23]. Gaya, U. I., Abdullah, A. H. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1-12.
doi:10.1016/j.jphotochemrev.2007.12.003

[24]. Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33-177.
doi:10.1016/j.progsolidstchem.2004.08.001

[25]. Theurich, J.; Lindner, M.; Bahnemann, D. W. Langmuir 1996, 12, 6368-6376.
doi:10.1021/la960228t

[26]. Li, X.; Cubbage, J. W.; Tetzlaff, T. A.; Jenks, W. S. J. Org. Chem. 1999, 64(23), 8509-8524.
doi:10.1021/jo990820y


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Gaya, U. Eur. J. Chem. 2011, 2(2), 163-167. doi:10.5155/eurjchem.2.2.163-167.369
Gaya, U. Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols. Eur. J. Chem. 2011, 2(2), 163-167. doi:10.5155/eurjchem.2.2.163-167.369
Gaya, U. (2011). Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols. European Journal of Chemistry, 2(2), 163-167. doi:10.5155/eurjchem.2.2.163-167.369
Gaya, Umar. "Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols." European Journal of Chemistry [Online], 2.2 (2011): 163-167. Web. 29 May. 2023
Gaya, Umar. "Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols" European Journal of Chemistry [Online], Volume 2 Number 2 (30 June 2011)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.2.2.163-167.369


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2011, 2(2), 163-167 | doi: https://doi.org/10.5155/eurjchem.2.2.163-167.369 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.