

Synthesis of ethylene carbonate from cyclocondensation of ethylene glycol and urea over ZnO•Cr2O3 catalyst system controlled by co-precipitation method
Sheenu Bhadauria (1)






(1) Catalysis and Nanomaterials Research Laboratory, School of Chemical Sciences, Devi Ahilya University, Indore, 452001, India
(2) Catalysis and Nanomaterials Research Laboratory, School of Chemical Sciences, Devi Ahilya University, Indore, 452001, India
(3) Catalysis and Nanomaterials Research Laboratory, School of Chemical Sciences, Devi Ahilya University, Indore, 452001, India
(4) Catalysis and Nanomaterials Research Laboratory, School of Chemical Sciences, Devi Ahilya University, Indore, 452001, India
(5) Department of Chemistry, Amravati University, Amravati, 444602, India
(6) Catalysis and Nanomaterials Research Laboratory, School of Chemical Sciences, Devi Ahilya University, Indore, 452001, India
(*) Corresponding Author
Received: 12 May 2011 | Accepted: 08 Mar 2012 | Published: 30 Jun 2012 | Issue Date: June 2012
Abstract
ZnO·Cr2O3 catalyst has been synthesized by low temperature, pH controlled co-precipitation route and characterized employing techniques of Brunauer, Emmett, and Teller (BET) surface area measurement, ammonia desorption technique, X-ray diffraction (XRD) and scanning electron microscopy (SEM). These characterizations reveal the catalyst to possess ZnO·ZnCr2O4 composition. The catalysts have been tested for their performance for the first time, in the synthesis of ethylene carbonate from cyclocondensation of ethylene glycol and urea. Effect of catalyst concentration, temperature and molar ratio of reactants has been studied to obtain the optimum conversion and selectivity of ethylene glycol and urea to ethylene carbonate. A maximum yield of 85.75% of ethylene carbonate was obtained at a temperature of 423 K and urea: ethylene glycol molar ratio of 1:1.5. A tentative mechanism of the reaction is proposed on the basis of analysis of reactants, products and modeling of the transition state for the reaction under density function theory using Gaussian09W software. Our studies suggest a consecutive mechanism for the reaction. In the first step, urea and ethylene glycol react to produce 2-hydroxyethyl carbamate, which undergoes further reaction to produce ethylene carbonate (EC) and ammonia.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization between July 1, 2022 and August 15, 2022 (Voucher code: SINGLE2022).
2. Young writers will not be charged for the article processing fee between July 1, 2022 and August 15, 2022 (Voucher code: YOUNG2022).
3. The article processing fee will not be charged from the articles containing a part of the PhD thesis between July 1, 2022 and August 15, 2022 (Voucher code: PhD2022).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.3.2.235-240.460
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
University Grants Commission-Department of Atomic Energy- Consortium for scientific Research (UGC-DAE-CSR), Indore, India; Department of Science and Technology (DST), New Delhi and Madhya Pradesh Council of Science & Technology (MPCST), Bhopal, India
Citations
[1]. Peixue Wang, Shimin Liu, Feng Zhou, Benqun Yang, Ahmad S. Alshammari, Liujin Lu, Youquan Deng
Two-step synthesis of dimethyl carbonate from urea, ethylene glycol and methanol using acid–base bifunctional zinc-yttrium oxides
Fuel Processing Technology 126, 359, 2014
DOI: 10.1016/j.fuproc.2014.05.012

[2]. Zhanying Zhang, Mark D. Harrison, Darryn W. Rackemann, William O. S. Doherty, Ian M. O'Hara
Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification
Green Chemistry 18(2), 360, 2016
DOI: 10.1039/C5GC02034D

[3]. Xiaoya Ji, Jinhai Yang, Ning Zhao, Feng Wang, Fukui Xiao
Synthesis of ethylene carbonate by alcoholysis of urea over Zn-Zr mixed oxides
Inorganic Chemistry Communications 134, 109061, 2021
DOI: 10.1016/j.inoche.2021.109061

[4]. Zhi-Qiang Hao, Jing-Pei Cao, Ya-Li Dang, Yan Wu, Xiao-Yan Zhao, Xian-Yong Wei
Three-Dimensional Hierarchical Porous Carbon with High Oxygen Content Derived from Organic Waste Liquid with Superior Electric Double Layer Performance
ACS Sustainable Chemistry & Engineering 7(4), 4037, 2019
DOI: 10.1021/acssuschemeng.8b05423

[5]. Dina Fakhrnasova, Ricardo J. Chimentão, Francisco Medina, Atsushi Urakawa
Rational and Statistical Approaches in Enhancing the Yield of Ethylene Carbonate in Urea Transesterification with Ethylene Glycol over Metal Oxides
ACS Catalysis 5(11), 6284, 2015
DOI: 10.1021/acscatal.5b01575

[6]. A. S. Lyadov, A. A. Kochubeev, E. B. Markova, S. N. Khadzhiev
Ethylene carbonate production by cyclocondensation of ethylene glycol and urea in the presence of metal oxides and metal acetylacetonates
Petroleum Chemistry 56(9), 852, 2016
DOI: 10.1134/S0965544116090152

[7]. Jianpei Wang, Yanmei Chen, Weihua Shen, Zhiqing Zhu, Yisheng Xu, Yunjin Fang
The role of zinc oxide in carbonylation of ethylene glycol to ethylene carbonate with urea: A precursor for homogeneous catalyst
Catalysis Communications 89, 52, 2017
DOI: 10.1016/j.catcom.2016.10.016

[8]. Prabhakar Sharma, Reena Dwivedi, Rajiv Dixit, Rajendra Prasad
DFT-Assisted Mechanism Evolution of the Carbonylation of Ethylene Glycol to Ethylene Carbonate by Urea over Zn(NCO)2·2NH3 Catalyst
Industrial & Engineering Chemistry Research 52(32), 10977, 2013
DOI: 10.1021/ie400745x

[9]. Zhanying Zhang, Ian M. O'Hara, Darryn W. Rackemann, William O. S. Doherty
Low temperature pretreatment of sugarcane bagasse at atmospheric pressure using mixtures of ethylene carbonate and ethylene glycol
Green Chem. 15(1), 255, 2013
DOI: 10.1039/C2GC36323B

References
[1]. Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365-2387.
http://dx.doi.org/10.1021/cr068357u
PMid:17564481
[2]. Clements, J. H. Ind. Eng. Chem. Res. 2003, 42, 663-674.
http://dx.doi.org/10.1021/ie020678i
[3]. Balasubramanian, M.; Lee, H. S.; Sun, X.; Yang, X. Q.; Moodenbaugh, A. R.; McBreen, J.; Fischer, D. A.; Fu, Z. Electrochem Solid St. 2002, 5, A22-A25.
http://dx.doi.org/10.1149/1.1423802
[4]. Chandrasekarani, R.; Koh, M.; Ozhawa, Y.; Aoyoma, H.; Nakajima, T. J. Chem. Science 2009, 121, 339-346.
http://dx.doi.org/10.1007/s12039-009-0039-2
[5]. Jie, L.; Wanhao, Y.; Meng, Y. S.; Yang, Y. J. Phys. Chem. C 2008, 112, 12550-12556.
[6]. Badsetan, M.; Christenson, E. M.; Unger, B.; Ausborn, M.; Kissel, T.; Hiltener, A.; Anderson, J. M. J. Control Release 2003, 93, 259-270.
http://dx.doi.org/10.1016/j.jconrel.2003.08.010
PMid:14644576
[7]. Shirahama, H.; Kanetani, A.; Yasuda, H. Polym. J. 2000, 32, 280-286.
http://dx.doi.org/10.1295/polymj.32.280
[8]. Wang, J. L.; He, L. N.; Miao, C. X.; Li, Y. N. Green Chem. 2009, 11, 1317-1320.
http://dx.doi.org/10.1039/b913779n
[9]. Shaikh, G.; Sivram, S. Chem. Rev. 1996, 96, 951-976.
http://dx.doi.org/10.1021/cr950067i
PMid:11848777
[10]. Ji, D.; Xiaobing, L.; Ren. H. Appl. Catal. A: Gen. 2000, 203, 329-333.
http://dx.doi.org/10.1016/S0926-860X(00)00500-7
[11]. Ion, A.; Parvulescu, V.; Jacobs, P.; Vos, D. D. Appl. Catal. A: Gen. 2009, 363, 40-44.
http://dx.doi.org/10.1016/j.apcata.2009.04.036
[12]. Jagtap, S.; Bhanushali, M.; Panda, A.; Bhalchandra, B. Catal. Lett. 2006, 112, 51-55.
http://dx.doi.org/10.1007/s10562-006-0163-2
[13]. Srivastava, R.; Srinivas, D.; Ratnasamy, P. J. Catal. 2005, 233, 1-15.
http://dx.doi.org/10.1016/j.jcat.2005.03.023
[14]. Bok, T.; Noh, E. K.; Yeoul, B.; Bull, L. Kore. Chem. Soc. 2006, 27, 1171-1174.
http://dx.doi.org/10.5012/bkcs.2006.27.8.1171
[15]. Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561-2563.
http://dx.doi.org/10.1021/ol026189w
[16]. Darensbourg, D. J.; Holtcamp, M. W. Coordin. Chem. Rev. 1996, 153, 155-174.
http://dx.doi.org/10.1016/0010-8545(95)01232-X
[17]. Tomishige, K.; Yasuda, H.; Yoshida, Y.; Nurunnabi, M.; Li, B.; Kunimori, K. Catal. Lett. 2004, 95, 45-49.
http://dx.doi.org/10.1023/B:CATL.0000023720.39110.4e
[18]. Yasuda, H.; He, L. N.; Takahashi, T.; Sakakura, T. Appl. Catal. A: Gen. 2006, 298, 177-180.
http://dx.doi.org/10.1016/j.apcata.2005.09.034
[19]. Du, Y.; Wu, Y.; Liu, A. H.; He, L. N. J. Org. Chem 2008, 73, 4709-4712.
http://dx.doi.org/10.1021/jo800269v
PMid:18473439
[20]. Wang, J. U.; Wang, J. Q.; He, L. N.; Dou, X. Y.; Wu, F. Green Chem. 2008, 10, 1218-1223.
http://dx.doi.org/10.1039/b807108j
[21]. Tomishige, K.; Yasuda, H.; Yoshida, Y.; Nurunnabi, M.; Li, B.; Kunimori, K. Green Chem. 2004, 6, 206-214.
http://dx.doi.org/10.1039/b401215a
[22]. Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O. Angew. Chem. Int. Edit. 2000, 39, 4096-4098.
http://dx.doi.org/10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
[23]. Kim, H. S.; Kim, J. J.; Kon, H. N.; Chung, M. J.; Lee, B. G.; Jang, H. G. J. Catal. 2002, 205, 226-229.
http://dx.doi.org/10.1006/jcat.2001.3444
[24]. Radhe Shyam, A.; Dwivedi, R.; Reddy, V. S.; Chary, K. V. R.; Prasad, R. P. Green Chem. 2002, 4, 558-561.
http://dx.doi.org/10.1039/b207410a
[25]. Basak, J.; Hardia, N.; Saxena, S.; Dixit, R.; Dwivedi, R.; Bhadauria, S.; Prasad, R. Ind. Eng. Chem. Res. 2007, 46, 7039-7044.
http://dx.doi.org/10.1021/ie070369y
[26]. Sreekumar, K.; Raja, T.; Kiran, B. P.; Sugunan, S.; Rao, B. S. Appl. Catal. A: Gen. 1999, 182, 327-336.
http://dx.doi.org/10.1016/S0926-860X(99)00031-9
[27]. Sreekumar, K.; Jyothi, T.; Govindankutty, R. C.; Rao, B. S.; Sugunan, S. React. Kinet. Catal. L. 2000, 70, 161-167.
[28]. Vijayaraj, M.; Gopinath, C. S. Appl. Catal. A: Gen. 2007, 320, 64-68.
http://dx.doi.org/10.1016/j.apcata.2006.12.016
[29]. Sachs, H. M.; Riverdale, N. Y. U S Patent 4786741, 1988.
[30]. Kao, J. L.; Ming, N. S. U S Patent 4231937, 1980.
[31]. Raines, D. A.; Colo, W.; Ainsworth, O. C.; Rouge, B. U S Patent 4233221, 1980.
[32]. Su, W. Y.; Speranza, G. P. E P Patent 0443758 A1, 1991.
[33]. Masaharu, D.; Takashi, O.; Yutaka, K.; Atsushi, O.; Kenlchi, K. E. P. Patent 0581131 A2, 1993.
[34]. Li, Q. B.; Zhang, W. Y.; Zhao, N.; Wei, W.; Sun, Y. H. Catal. Today, 2006, 115, 111-116.
http://dx.doi.org/10.1016/j.cattod.2006.02.033
[35]. Zhao, X. Q.; Jia, Z. G.; Wang, Y. J. Chem. Technol. Biot. 2006, 81, 794-798.
http://dx.doi.org/10.1002/jctb.1412
[36]. Jia, Z. G.; Zhao, X. Q.; An, H. L.; Wu, C. C.; Wang, Y. J. Petrol. Technol. 2006, 35, 927-931.
[37]. Xinqiang, Z.; Hualiang, A.; Shufang, W.; Fang, L.; Yanji, W. J. Chem. Tecnol. Biot. 2008, 83, 750-755.
http://dx.doi.org/10.1002/jctb.1872
[38]. Cullity B. D. Elements of X-ray diffraction 2nd edn. Addison-Wesley Publishing Co. NewYork, 1978.
[39]. Xu, Z.; Hwang, J. Y.; Li, B.; Huang, X.; Wang, H. JOM 2008, 60, 29-32.
http://dx.doi.org/10.1007/s11837-008-0044-9
[40]. Naik, S. P.; Fernandes, J. B. Thermochim. Acta 1999, 332, 21-25.
http://dx.doi.org/10.1016/S0040-6031(99)00063-5
[41]. Lavalley, J. C.; Saussey, J.; Bovet, C. J. Mol. Struct. 1982, 80, 191-194.
http://dx.doi.org/10.1016/0022-2860(82)87229-3
[42]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, V. H. T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, Gaussian 09, Revision B. 01, 2010.
[43]. Foresman, J. B.; Frisch, A. Exploring chemistry with electronic structure methods, 2nd Edition, Gaussian Inc, Pittsburgh, PA, 1996.
[44]. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
http://dx.doi.org/10.1103/PhysRevA.38.3098
PMid:9900728
[45]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
[46]. Li, Q. W.; Zhang, Zhao, N.; Wej, W.; Sun, Y. Catal. Today 2006, 115, 111-116.
http://dx.doi.org/10.1016/j.cattod.2006.02.033
[47]. Lu, X.; Xu, X.; Wang, N.; Zhang, Q. J. Phys. Chem. B 1999, 103, 2689-2695.
http://dx.doi.org/10.1021/jp981309w
[48]. Lu, X.; Xin, X.; Wang, N.; Zhang, Q. Ehara, M.; Nakatsuji, H. Chem. Phys. Lett. 1998, 291, 445-452.
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.3.2.235-240.460


















European Journal of Chemistry 2012, 3(2), 235-240 | doi: https://doi.org/10.5155/eurjchem.3.2.235-240.460 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2022 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.