European Journal of Chemistry 2012, 3(1), 32-36 | doi: https://doi.org/10.5155/eurjchem.3.1.32-36.525 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Composition and properties of tectosilicate-uranium layers of soil


Cecilio Duarte Alaniz (1) , Eduardo Ordonez Regil (2,*) , Guillermo Jesus Cruz Cruz (3) , Jesus Ramirez Torres (4) , Jose Lopez Monroy (5)

(1) Facultad de Ciencias, Universidad Autónoma del Estado de México, Unidad Académica del Cerrillo, Piedras Blancas El Cerrillo, Tlachaloya Estado de México, CP 50000, México
(2) Departamento de Química, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, CP 52750, México
(3) Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, CP 52750, México
(4) Acelerador Tandem, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, CP 52750, México
(5) Acelerador Tandem, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, Estado de México, CP 52750, México
(*) Corresponding Author

Received: 07 Sep 2011 | Revised: 09 Oct 2011 | Accepted: 13 Oct 2011 | Published: 31 Mar 2012 | Issue Date: March 2012

Abstract


Structure and superficial properties of tectosilicates found in soils with potential to retain uranium are studied in this work. These tectosilicates are largely available as natural minerals in the soil and are composed mainly by anorthite (CaAl2Si2O8), albite (NaAlSi3O8) and orthoclase (KAlSi3O8), in which albite has approximately 3 times the content of orthoclase and 2.5 times the content of anorthite. However, anorthite has a double cell structure, which could result in approximately the same sorption effect as albite. The acidity constants calculated with the surface complexation model suggested that the three components have similar amphoteric behavior in presence of high ionic strength ground salt solutions. The composite mineral has a specific surface area of 20.5 m2g-1 with site density of 2.8 sites nm-2. These characteristics make this mineral a good candidate for uranium capture.

3_1_32_36_800


Keywords


Albite; Anorthite; Orthoclase; Surface area; Acidity constants; Potentiometric titrations

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.3.1.32-36.525

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1009 times | icon graph PDF Article downloaded 332 times


Citations

/


[1]. Christopher T. Elliott, Lisa Connolly, Oluwatobi Kolawole
Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure
Mycotoxin Research  36(1), 115, 2020
DOI: 10.1007/s12550-019-00375-7
/


[2]. Oľga Rosskopfová’s, Lucia Pivarčiová’s, Adrián Krajňák’s, Michal Galamboš’s, Pavol Rajec’s
Adsorption of nickel on illite/smectite Dolná Ves
Journal of Radioanalytical and Nuclear Chemistry  307(1), 179, 2016
DOI: 10.1007/s10967-015-4110-9
/


[3]. Agnieszka Gładysz-Płaska, Ewelina Grabias, Marek Majdan
Simultaneous adsorption of uranium(VI) and phosphate on red clay
Progress in Nuclear Energy  104, 150, 2018
DOI: 10.1016/j.pnucene.2017.09.010
/


[4]. A. Krajňák, L. Pivarčiová, O. Rosskopfová, M. Galamboš, P. Rajec
Adsorption of nickel on rhyolitic Slovak bentonites
Journal of Radioanalytical and Nuclear Chemistry  304(2), 587, 2015
DOI: 10.1007/s10967-014-3832-4
/


[5]. Kolawole, Meneely, Greer, Chevallier, Jones, Connolly, Elliott
Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims
Toxins  11(11), 659, 2019
DOI: 10.3390/toxins11110659
/


References


[1]. Kratz, S.; Schnug E.; Markel B. J.; Hasche-Berger A. (Eds.), Rock phosphates and P fertilizers as sources of U contamination in agricultural soils, Springer, Berlin, Heidelberg, 2006, pp. 57-68.

[2]. Guzman, R. E. T.; Regil, O. E.; Alberich, E. M. V.; Hernandez, R. A.; Gutierrez, R. L. R.; Regil, O. E. Water, Air, Soil Pollut. 2006, 175, 77-98.
http://dx.doi.org/10.1007/s11270-006-9114-1

[3]. Guzman, R. E. T.; Alberich, E. M. V.; Regil, O. E. J. Radioanal. Nucl. Chem. 2002, 254(3), 509-517.
http://dx.doi.org/10.1023/A:1021690005227

[4]. DeMasily, G. Radiochim. Acta 1998, 44-45, 159-164.

[5]. Grenthe, I. Radiochim. Acta 1991, 52-53, 425-432.

[6]. Jaquier, P. Radiochim. Acta 1991, 52-53, 495-500.

[7]. Dozol, M.; Hagemann, R. Pure App. Chem. 1993, 65(5), 1081-1102.
http://dx.doi.org/10.1351/pac199365051081

[8]. Guillaumont, R. Radiochim. Acta 1994, 66-67, 231-237.

[9]. Day, D. H.; Hughes, A. E.; Leake, J. W.; Marples, J. A.; Marsh, G. P.; Rae, J.; Wade, B. O. Rep. Prog. Phys. 1985, 48, 1091-1154.
http://dx.doi.org/10.1088/0034-4885/48/1/003

[10]. Hueckel, T.; Peano, A. Comput. Geotech. 1987, 3(2-3), 157-182.
http://dx.doi.org/10.1016/0266-352X(87)90019-X

[11]. Abdelouahed, H. B.; Reguigui, N. J. Radioanal. Nucl. Chem. 2011, 289, 103-111.
http://dx.doi.org/10.1007/s10967-011-1035-9

[12]. Guzman, R. E. T.; Rios, S. M.; Garcia, I. J. L.; Regil, O. E. J. Radioanal. Nucl. Chem. 1995, 189(2), 301-305.
http://dx.doi.org/10.1007/BF02042609

[13]. Souka, N.; Shabana, R.; Farah, K. J. Radional. Nucl. Chem. 1976, 33, 15-23.

[14]. Yinjie, S.; Hui, Z.; Qiaoling, Y.; Aimin, Z. J. Radioanal. Nucl. Chem. Art. 1995, 198(2), 375-387.
http://dx.doi.org/10.1007/BF02036553

[15]. Lomenech, C.; Drot, R.; Simoni, E. Radiochim. Acta 2003, 91, 453-461.
http://dx.doi.org/10.1524/ract.91.8.453.20004

[16]. Regil, O. E.; Drot, R.; Simoni, E. J. Colloid. Interface Sci. 2003, 263, 391-398.

[17]. Galambos, M.; Rosskopfova, O.; Kufcakova, J.; Rajec, P. L. J. Radioanal. Nucl. Chem. 2011, 288, 765-777.
http://dx.doi.org/10.1007/s10967-011-0987-0

[18]. Garcia, G.; Ordoñez, E.; Drot, R.; Perez, M. Inf. Tecnol. 2004, 15(4), 31-38.
http://dx.doi.org/10.4067/S0718-07642004000400006

[19]. Zhang, Y.; Zhao, H.; Fan, Q.; Zheng, X.; Li, P.; Liu, S.; Wu, W. J. Radioanal. Nucl. Chem. 2011, 288, 395-404.
http://dx.doi.org/10.1007/s10967-010-0948-z

[20]. Drot, R.; Lindecker, C.; Fourest, B.; Simoni, E.; New J. Chem. 1998, 1, 1105-1109.
http://dx.doi.org/10.1039/a803215g

[21]. Hayes, K. F.; Redden, G.; Ela, W.; Leckie, J. O. J. Colloid. Interface Sci. 1991, 142(2), 448-469.
http://dx.doi.org/10.1016/0021-9797(91)90075-J

[22]. Noh, J.; Schwarz, J. J. J. Colloid. Interface. Sci. 1989, 130, 157-164.
http://dx.doi.org/10.1016/0021-9797(89)90086-6

[23]. Herbelin, A.; Westall, J., FITEQL4 V 4.0 program; Report 96-01. Department of Chemistry, Oregon State University, Corvallis, 1996.

[24]. Preocanin, T.; Kallay, N. Croat. Chem. Acta 1998, 71(4), 1117-1125.

[25]. Available at: http://adsorption.org/awm/ads/EnCorr.htm by Marczewski, A. W. Last update on: 01/04/2012.

[26]. Cerius Database, Biosym/Molecular Simulations. USA, 1995.

[27]. Hodgson, M. E. J. Geochem. Explor. 2006, 88, 288-303.
http://dx.doi.org/10.1016/j.gexplo.2005.08.058

[28]. Armbruster, T.; Bürgi, H. B.; Kunz, M.; Gnos, E.; Bröniman, S.; Lienert, C. Am. Mineral. 1990, 75, 135-140.

[29]. Harlow, G.; Brown, G. E. Jr. Am. Mineral. 1980, 65, 986-995.

[30]. Murakami, T.; Kogure, T.; Kadohara, H.; Ohniki, T. Am. Mineral. 1998, 83, 1209-1219.

[31]. Simoni, E., Encyclopedia of surface and colloid science, Marcel Dekker Inc. 2002.

[32]. Appelo, C. A. J.; Postma, D. Geochim. Cosmochim. Acta 1999, 63(19-20), 3039-3048.
http://dx.doi.org/10.1016/S0016-7037(99)00231-8


How to cite


Alaniz, C.; Regil, E.; Cruz, G.; Torres, J.; Monroy, J. Eur. J. Chem. 2012, 3(1), 32-36. doi:10.5155/eurjchem.3.1.32-36.525
Alaniz, C.; Regil, E.; Cruz, G.; Torres, J.; Monroy, J. Composition and properties of tectosilicate-uranium layers of soil. Eur. J. Chem. 2012, 3(1), 32-36. doi:10.5155/eurjchem.3.1.32-36.525
Alaniz, C., Regil, E., Cruz, G., Torres, J., & Monroy, J. (2012). Composition and properties of tectosilicate-uranium layers of soil. European Journal of Chemistry, 3(1), 32-36. doi:10.5155/eurjchem.3.1.32-36.525
Alaniz, Cecilio, Eduardo Ordonez Regil, Guillermo Jesus Cruz Cruz, Jesus Ramirez Torres, & Jose Lopez Monroy. "Composition and properties of tectosilicate-uranium layers of soil." European Journal of Chemistry [Online], 3.1 (2012): 32-36. Web. 17 Jan. 2022
Alaniz, Cecilio, Regil, Eduardo, Cruz, Guillermo, Torres, Jesus, AND Monroy, Jose. "Composition and properties of tectosilicate-uranium layers of soil" European Journal of Chemistry [Online], Volume 3 Number 1 (31 March 2012)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.3.1.32-36.525

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2012, 3(1), 32-36 | doi: https://doi.org/10.5155/eurjchem.3.1.32-36.525 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.