European Journal of Chemistry 2012, 3(2), 258-266. doi:10.5155/eurjchem.3.2.258-266.536

Recent progress in the asymmetric Mannich reaction


Cai Xiao-Hua (1,*) , Guo Hui (2) , Xie Bing (3)

(1) College of Chemistry and Environmental Science, Guizhou Minzu University, Guiyang, 550025, China
(2) College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
(3) College of Chemistry and Environmental Science, Guizhou Minzu University, Guiyang, 550025, China
(*) Corresponding Author

Received: 02 Oct 2011, Accepted: 09 Jan 2012, Published: 30 Jun 2012

Abstract


The asymmetric Mannich reaction is one of the most useful carbon-carbon bond forming reactions for the synthesis of chiral molecules containing nitrogen. The resulting β-amino carbonyl compounds are valuable synthons in the preparation of many natural products with useful biological properties. In recent years, asymmetric Mannich processes have increasingly been reported and used in a rapidly growing number of applications. This review provides an overview of the recent history of the applications of various catalytic systems in asymmetric Mannich reaction, including metal-based asymmetric organocatalysis, asymmetric organocatalysis, other chiral catalysis and no chiral catalysis systems.

3_2_258_266_800


Keywords


Chiral amine catalysis; Chiral Bronsted acid; Asymmetric organocatalysis; Metal-based organocatalysis; Asymmetric Mannich reaction; Diastereo- and enantioselective

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.3.2.258-266.536

Article Metrics


This Abstract was viewed 1824 times | PDF Article downloaded 1949 times

Citations

/


[1]. Jie Guang, Ariel J. Larson, John C.-G. Zhao
Stereoselective Mannich Reaction ofS-Phenyl Thioesters Catalyzed by Bifunctional Organocatalysts
Advanced Synthesis & Catalysis  357(2-3), 523, 2015
DOI: 10.1002/adsc.201400735
/


[2]. Zhi Guan, Jian Song, Yang Xue, Da-Cheng Yang, Yan-Hong He
Enzyme-catalyzed asymmetric Mannich reaction using acylase from Aspergillus melleus
Journal of Molecular Catalysis B: Enzymatic  111, 16, 2015
DOI: 10.1016/j.molcatb.2014.11.007
/


[3]. Jan Vesely, Ramon Rios
Enantioselective methodologies using N-carbamoyl-imines
Chem. Soc. Rev.  43(2), 611, 2014
DOI: 10.1039/C3CS60321K
/


[4]. Jakub Iwanejko, Elżbieta Wojaczyńska, Jacek Wojaczyński, Julia Bąkowicz
Stereoselective preparation of chiral compounds in Mannich-type reactions of a bicyclic imine and phenols or indole
Tetrahedron Letters  55(49), 6619, 2014
DOI: 10.1016/j.tetlet.2014.10.081
/


[5]. Hélène Pellissier
Enantioselective Silver-Catalyzed Transformations
Chemical Reviews  116(23), 14868, 2016
DOI: 10.1021/acs.chemrev.6b00639
/


[6]. Marco Lombardo, Lucia Cerisoli, Elisabetta Manoni, Elisa Montroni, Arianna Quintavalla, Claudio Trombini
Properties and Reactivity of Conformationally Constrained Bicyclic Diarylprolinol Silyl Ethers as Organocatalysts
European Journal of Organic Chemistry  2014(27), 5946, 2014
DOI: 10.1002/ejoc.201402732
/


[7]. Hélène Pellissier
Enantioselective magnesium-catalyzed transformations
Organic & Biomolecular Chemistry  15(22), 4750, 2017
DOI: 10.1039/C7OB00903H
/


[8]. Xiao-Hua Cai, Guo Hui, Xie Bing
ChemInform Abstract: Recent Progress in the Asymmetric Mannich Reaction
ChemInform  43(43), no, 2012
DOI: 10.1002/chin.201243263
/


[9]. Fangrui Zhong, Chunhui Jiang, Weijun Yao, Li-Wen Xu, Yixin Lu
Molecular sieve mediated decarboxylative Mannich and aldol reactions of β-ketoacids
Tetrahedron Letters  54(32), 4333, 2013
DOI: 10.1016/j.tetlet.2013.06.030
/


[10]. Pankaj Chauhan, Suruchi Mahajan, Dieter Enders
Organocatalytic Carbon–Sulfur Bond-Forming Reactions
Chemical Reviews  114(18), 8807, 2014
DOI: 10.1021/cr500235v
/


[11]. Michał Rachwalski, Tim Leenders, Sylwia Kaczmarczyk, Piotr Kiełbasiński, Stanisław Leśniak, Floris P. J. T. Rutjes
Efficient catalysts for asymmetric Mannich reactions
Organic & Biomolecular Chemistry  11(25), 4207, 2013
DOI: 10.1039/c3ob40681d
/


[12]. Kengadarane Anebouselvy, Kodambahalli S. Shruthi, Dhevalapally B. Ramachary
Asymmetric Supramolecular Organocatalysis: A Complementary Upgrade to Organocatalysis
European Journal of Organic Chemistry  2017(37), 5460, 2017
DOI: 10.1002/ejoc.201700611
/


[13]. Yujiro Hayashi, Daisuke Sakamoto, Hiroki Shomura, Daisuke Hashizume
Asymmetric Mannich Reaction of α-Keto Imines Catalyzed by Diarylprolinol Silyl Ether
Chemistry - A European Journal  19(24), 7678, 2013
DOI: 10.1002/chem.201300513
/


[14]. Paige E. Daniel, Alexandria E. Weber, Steven J. Malcolmson
Umpolung Synthesis of 1,3-Amino Alcohols: Stereoselective Addition of 2-Azaallyl Anions to Epoxides
Organic Letters  19(13), 3490, 2017
DOI: 10.1021/acs.orglett.7b01471
/


[15]. Mette Ishoey, Thomas E. Nielsen
Synthesis of Heterocycles through Transition Metal-Catalyzed Isomerization Reactions
Chemistry - A European Journal  , n/a, 2014
DOI: 10.1002/chem.201400216
/


[16]. Shunsuke Kotani, Toshifumi Asano, Miyuki Moritani, Makoto Nakajima
Enantioselective amination of acyclic α-alkylated β-keto esters catalyzed by chiral lithium binaphtholate
Tetrahedron Letters  57(37), 4217, 2016
DOI: 10.1016/j.tetlet.2016.08.013
/


[17]. Jakub Iwanejko, Elżbieta Wojaczyńska, Justyna Trynda, Magdalena Maciejewska, Joanna Wietrzyk, Andrzej Kochel, Jacek Wojaczyński
New chiral Mannich adducts of di- tert -butylphenols and a bicyclic imine – Synthesis and antiproliferative activity
Tetrahedron  73(16), 2276, 2017
DOI: 10.1016/j.tet.2017.03.017
/


[18]. Hong Hou, Shaoqun Zhu, Iuliana Atodiresei, Magnus Rueping
Asymmetric Organocatalysis and Photoredox Catalysis for the α-Functionalization of Tetrahydroisoquinolines
European Journal of Organic Chemistry  2018(10), 1277, 2018
DOI: 10.1002/ejoc.201800117
/


[19]. Sandun Perera, Debarshi Sinha, Nirmal K. Rana, Van Trieu-Do, John Cong-Gui Zhao
List–Barbas–Mannich Reaction Catalyzed by Modularly Designed Organocatalysts
The Journal of Organic Chemistry  78(21), 10947, 2013
DOI: 10.1021/jo4019304
/


References

[1]. Cordova, A. Acc. Chem. Res. 2004, 37, 102-112.
http://dx.doi.org/10.1021/ar030231l
PMid:14967057

[2]. Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069-1094
http://dx.doi.org/10.1021/cr980414z
PMid:11749440

[3]. Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044-1070.
http://dx.doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E

[4]. Arrays, R. G.; Carretero, J. C. Chem. Soc. Rev. 2009, 38, 1940-1048.
http://dx.doi.org/10.1039/b820303b
PMid:19551174

[5]. Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29-41.
http://dx.doi.org/10.1039/b713885g
PMid:18197331

[6]. Pellissier, H. Tetrahedron 2007, 63, 9267-9331.
http://dx.doi.org/10.1016/j.tet.2007.06.024

[7]. J. A. Ma, Angew. Chem. Int. Ed. 2003, 42, 4290-4299.
http://dx.doi.org/10.1002/anie.200301600
PMid:14502699

[8]. Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991-8035.
http://dx.doi.org/10.1016/S0040-4020(02)00991-2

[9]. Müller, R.; Goesmann, H.; Waldmann, H. Angew. Chem. Int. Ed. 1999, 38, 184-187.
http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<184::AID-ANIE184>3.0.CO;2-E

[10]. Chen, Z. H.; Yakura, K.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2008, 10(15), 3239-3242.
http://dx.doi.org/10.1021/ol800965t
PMid:18610973

[11]. Shepherd, N. E.; Tanabe, H.; Xu, Y. J.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 3666-3667.
http://dx.doi.org/10.1021/ja1002636
PMid:20192184

[12]. Wang, J.; Shi, T.; Deng, G. H.; Jiang, H. L.; Liu, H. J. Org. Chem. 2008, 73, 8563-8570.
http://dx.doi.org/10.1021/jo8019169
PMid:18844412

[13]. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356-2358.
http://dx.doi.org/10.1016/j.tetlet.2011.02.087

[14]. Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 4925-4934.
http://dx.doi.org/10.1021/ja100514y
PMid:20218689

[15]. Zhang, Q.; Hui, Y. H.; Zhou, X.; Lin, L. L.; Liu, X. H.; Feng, X. M. Adv. Synth. Cat. 2010, 352, 976-980.
http://dx.doi.org/10.1002/adsc.200900877

[16]. Zhou, L.; Lin, L. L.; Ji, J.; Xie, M. S.; Liu, X. H.; Feng, X. M. Org. Lett. 2011, 13, 3056-3059.
http://dx.doi.org/10.1021/ol200939t
PMid:21595425

[17]. Zhao, Q. -Y.; Yuan, Z. -L.; Shi, M. Tetrahedron-Asymmetr. 2010, 21, 943-951.
http://dx.doi.org/10.1016/j.tetasy.2010.05.025

[18]. Zhao, Q. -Y.; Shi, M. Tetrahedron 2011, 67, 3724-3732.
http://dx.doi.org/10.1016/j.tet.2011.03.046

[19]. Curti, C.; Battistini, L.; Ranieri, B.; Pelosi, G.; Rassu, G.; Casiraghi, G.; Zanardi, F. J. Org. Chem. 2011, 76, 2248-2252.
http://dx.doi.org/10.1021/jo1021234
PMid:21381711

[20]. Poisson, T.; Tsubogo, T.; Yamashita, Y.; Kobayashi, S. J. Org. Chem. 2010, 75, 963-965.
http://dx.doi.org/10.1021/jo902383b
PMid:20058931

[21]. Liang, G.; Tong, M. -C.; Tao, H. Y.; Wang, C. -J. Adv. Synth. Cat. 2010, 352, 1851-1855.
http://dx.doi.org/10.1002/adsc.201000252

[22]. Hernandez-Toribio, J.; Arrayas, R. G.; Carretero, J. C. Chem. Eur. J. 2010, 16, 1153-1157.
http://dx.doi.org/10.1002/chem.200902258
PMid:20024985

[23]. List, B. J. Am. Chem. Soc. 2000, 122, 9336-9337.
http://dx.doi.org/10.1021/ja001923x

[24]. List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827-833.
http://dx.doi.org/10.1021/ja0174231
PMid:11817958

[25]. Chandler, C.; Galzerano, P.; Michrowska, A.; List, B. Angew. Chem. Int. Ed. 2009, 48, 1978-1980.
http://dx.doi.org/10.1002/anie.200806049
PMid:19199308

[26]. Han, R. -G.; Wang, Y.; Li, Y. -Y.; Xu P. F. Adv. Synth. Cat. 2008, 350, 1474-1478.
http://dx.doi.org/10.1002/adsc.200800253

[27]. Hahn, B. T.; Frohlich, R.; Harms, K.; Glorius, F. Angew. Chem. Int. Ed. 2008, 47, 9985-9988.
http://dx.doi.org/10.1002/anie.200803515
PMid:19006133

[28]. Deiana, L.; Zhao, G. -L.; Dziedzic, P.; Rios, R.; Vesely, J.; Ekstr, J.; Cordova, A. Tetrahedron Lett. 2010, 51, 234-237.
http://dx.doi.org/10.1016/j.tetlet.2009.10.130

[29]. Li, L. Q.; Han, M. Y.; Xiao, M. X.; Xie, Z. X. Synlett 2011, 1727-1730.

[30]. Veverkova, E.; Strasserova, J.; Sebesta, R.; Toma, S. Tetrahedron: Asymmetry 2010, 21, 58-61.
http://dx.doi.org/10.1016/j.tetasy.2009.12.013

[31]. Lu, M.; Lu, Y. P.; Tan, P. K. A.; Lau, Q. Y.; Zhong, G. F. Synlett 2011, 477-480.

[32]. Gianelli, C.; Sambri, L.; Carlone, A.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2008, 47, 8700-8702.
http://dx.doi.org/10.1002/anie.200803819
PMid:18846535

[33]. Fustero, S.; Mojarrad, F.; Carrion, M. D. P.; Sanz-Cervera, J. F.; Acena, J. L. Eur. J. Org. Chem. 2009, 5208-5214.
http://dx.doi.org/10.1002/ejoc.200900509

[34]. Urushima, T.; Ishikawa, H.; Hayashi, Y. Chem. Eur. J. 2011, 17, 8273-8276.
http://dx.doi.org/10.1002/chem.201101077
PMid:21656864

[35]. Pouliquen, M.; Blanchet, J.; Lasne, M. -C.; Rouden, J. Org. Lett. 2008, 10, 1029-1032.
http://dx.doi.org/10.1021/ol8000975
PMid:18225912

[36]. Zhang, H. L.; Mitsumori, S.; Utsumi, N.; Imai, M.; Garcia-Delgado, N.; Mifsud, M.; Albertshofer, K.; Cheong, P. H. -Y.; Houk, K. N.; Tanaka, F. J.; Barbas, C. F. J. Am. Chem. Soc. 2008, 130, 875-886.
http://dx.doi.org/10.1021/ja074907+
PMid:18163619

[37]. Hayashi, Y.; Urushima, T.; Aratake, S.; Okano, T.; Obi, K. Org. Lett. 2008, 10, 21-24
http://dx.doi.org/10.1021/ol702489k
PMid:18052181

[38]. Lou, S.; Dai, P.; Schaus, S. E. J. Org. Chem. 2007, 72, 9998-10008.
http://dx.doi.org/10.1021/jo701777g
PMid:18047372

[39]. Liu, X. D.; Deng, L. J.; Song, H. J.; Jia, H. Z.; Wang, R. Org. Lett. 2011, 13 1494-1497.
http://dx.doi.org/10.1021/ol200185h
PMid:21344918

[40]. Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T. J. Am. Chem. Soc. 2007, 129, 6394-6395.
http://dx.doi.org/10.1021/ja071509y
PMid:17461589

[41]. Kano, T.; Yamaguchi, Y.; Maruoka, K. Chem. Eur. J. 2009, 15, 6678-6687.
http://dx.doi.org/10.1002/chem.200900267
PMid:19479934

[42]. Kano, T.; Yamaguchi, Y.; Maruoka, K. Angew. Chem. Int. Ed. 2009, 48, 1838-1840.
http://dx.doi.org/10.1002/anie.200805628
PMid:19173354

[43]. Chen, X. H.; Dong, S. X.; Qiao, Z.; Zhu, Y.; Xie, M. S.; Lin, L. L.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2011, 17, 2583-2586.
http://dx.doi.org/10.1002/chem.201002571
PMid:21271617

[44]. Pan, Y. H.; Zhao, Y. J.; Ma, T.; Yang, Y. Y.; Liu, H. J.; Jiang, Z. Y.; Tan, C. -H. Chem. Eur. J. 2010, 16, 779-782.
PMid:19943289

[45]. Wang, C. G.; Zhou, Z. H.; Tang, C. C. Org. Lett. 2008, 10, 1707-1710.
http://dx.doi.org/10.1021/ol8003035
PMid:18396893

[46]. Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y. -C. Org. Lett. 2008, 10, 3583-3586.
http://dx.doi.org/10.1021/ol801351j
PMid:18642826

[47]. Wang, C. -J.; Dong, X. -Q.; Zhang, Z. -H.; Xue, Z. -Y. and Teng, H. -L. J. Am. Chem. Soc. 2008, 130, 8606-8607.
http://dx.doi.org/10.1021/ja803538x
PMid:18549213

[48]. Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K. -W.; Lu, Y. X. Angew. Chem. Int. Ed. 2009, 48, 7604-7607.
http://dx.doi.org/10.1002/anie.200903635
PMid:19739170

[49]. Kohler, M. C.; Yost, J. M.; Garnsey, M. R.; Coltart, D. M. Org. Lett. 2010, 12, 3376-3379.
http://dx.doi.org/10.1021/ol101152b
PMid:20608684

[50]. Hee. L. J.; Kim, D. Y. Synthesis 2010, 1860-1864.

[51]. Enders, D.; Goddertz, D. P.; Beceñe, C.; Raabe, G. Adv. Synth. Cat. 2010, 352, 2863-2868.
http://dx.doi.org/10.1002/adsc.201000658

[52]. Chuan, Y. -M.; Chen, G. -H.; Gao, J. -Z.; Zhang, H.; Peng, Y. -G. Chem. Commun. 2011, 47, 3260-3262.
http://dx.doi.org/10.1039/c0cc05249c
PMid:21283837

[53]. Giera, D. S.; Sickert, M.; Schneider, C. Org. Lett. 2008, 10, 4259-4262.
http://dx.doi.org/10.1021/ol8017374
PMid:18754625

[54]. Rueping, M.; Lin, M. -Y. Chem. Eur. J. 2010, 16, 4169-4172.
http://dx.doi.org/10.1002/chem.201000203
PMid:20309979

[55]. Kundu, D.; Debnath, R. K.; Majee, A.; Hajra, A. Tetrahedron Lett. 2009, 50, 6998-7000.
http://dx.doi.org/10.1016/j.tetlet.2009.09.153

[56]. Zheng, X.; Qian, Y. -B.; Wang, Y. M. Eur. J. Org. Chem. 2010, 515-522.
http://dx.doi.org/10.1002/ejoc.200901088

[57]. Marianacci, O.; Micheletti, G.; Bernardi, L.; Fini, F.; Fochi, M.; Pettersen, D.; Sgarzani, V.; Ricci, A. Chem. Eur. J. 2007, 13, 8338-8351.
http://dx.doi.org/10.1002/chem.200700908
PMid:17705329

[58]. Jakubec, P.; Helliwell, M.; Dixon, D. J. Org. Lett. 2008, 10, 4267-4270.
http://dx.doi.org/10.1021/ol801666w
PMid:18763784

[59]. Sophie M. -C.; Pelletier, P.; Ray, C.; Dixon, D. J. Org. Lett. 2009, 11, 4512-4515.
http://dx.doi.org/10.1021/ol901640v
PMid:19764710

[60]. Giampietro, N. C.; Wolfe, J. P. Angew. Chem. Int. Ed. 2010, 49, 2922-2924.
http://dx.doi.org/10.1002/anie.201000609
PMid:20232436

[61]. Liu B.; Lu, C. -D. J. Org. Chem. 2011, 76, 4205-4209.
http://dx.doi.org/10.1021/jo200585r
PMid:21528847


How to cite


Xiao-Hua, C.; Hui, G.; Bing, X. Eur. J. Chem. 2012, 3(2), 258-266. doi:10.5155/eurjchem.3.2.258-266.536
Xiao-Hua, C.; Hui, G.; Bing, X. Recent progress in the asymmetric Mannich reaction. Eur. J. Chem. 2012, 3(2), 258-266. doi:10.5155/eurjchem.3.2.258-266.536
Xiao-Hua, C., Hui, G., & Bing, X. (2012). Recent progress in the asymmetric Mannich reaction. European Journal of Chemistry, 3(2), 258-266. doi:10.5155/eurjchem.3.2.258-266.536
Xiao-Hua, Cai, Guo Hui, & Xie Bing. "Recent progress in the asymmetric Mannich reaction." European Journal of Chemistry [Online], 3.2 (2012): 258-266. Web. 22 Sep. 2019
Xiao-Hua, Cai, Hui, Guo, AND Bing, Xie. "Recent progress in the asymmetric Mannich reaction" European Journal of Chemistry [Online], Volume 3 Number 2 (30 June 2012)

DOI Link: https://doi.org/10.5155/eurjchem.3.2.258-266.536

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.