European Journal of Chemistry 2012, 3(2), 191-195. doi:10.5155/eurjchem.3.2.191-195.564

Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst


Venkatesham Vuppala (1) , Madhu Gattumane Motappa (2,*) , Satyanarayana Suggala Venkata (3) , Preetham Halugondanahalli Sadashivaiah (4)

(1) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, India
(2) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, India
(3) Department of Chemical Engineering, Jawaharlal Nehru Technological University, Anantapur, 515002, India
(4) Department of Chemical Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, India
(*) Corresponding Author

Received: 26 Nov 2011, Accepted: 12 Feb 2012, Published: 30 Jun 2012

Abstract


The photocatalytic degradation of methylene blue in aqueous solution was studied using a UV source in the presence of zinc oxide-cerium oxide (ZnO-Ce2O3) as photocatalyst, which was synthesized by a gel combustion technique and characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The particle size of the catalyst was found to be in between 45 to 60 nm. The effects of catalyst loading (1.0-8.0 g/L), pH (4.0-9.2) and dye concentration (5.0-20.0 mg/L) on the degradation were studied in a batch reactor. The degradation rate was found to be strongly dependent on these experimental parameters. Appreciable degradation of methylene blue was achieved when the catalyst was calcined before use. Best results were observed with a catalyst loading of 5 g/L at pH = 9.2.

3_2_191_195_800


Keywords


ZnO-Ce2O3; Photocatalyst; Nanomaterial; Methylene blue; Gel-combustion; Water treatment

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.3.2.191-195.564

Article Metrics


This Abstract was viewed 1191 times | PDF Article downloaded 309 times

Citations

/


[1]. S.K. Evstropiev, A.V. Karavaeva, K.V. Dukelskii, K.S. Evstropyev, N.V. Nikonorov, E.V. Kolobkova
Transparent ZnO-Y2O3 coatings: Bactericidal effect in the lighting and in the darkness
Ceramics International  44(8), 9091, 2018
DOI: 10.1016/j.ceramint.2018.02.116
/


[2]. Colin Awungacha Lekelefac, Peter Czermak, Michael Herrenbauer
Evaluation of Photocatalytic Active Coatings on Sintered Glass Tubes by Methylene Blue
International Journal of Photoenergy  2013, 1, 2013
DOI: 10.1155/2013/614567
/


[3]. Muneer M. Ba-Abbad, Mohd S. Takriff, Abdul Amir H. Kadhum, Abu Bakar Mohamad, Abdelbaki Benamor, Abdul Wahab Mohammad
Solar photocatalytic degradation of 2-chlorophenol with ZnO nanoparticles: optimisation with D-optimal design and study of intermediate mechanisms
Environmental Science and Pollution Research  24(3), 2804, 2017
DOI: 10.1007/s11356-016-8033-y
/


[4]. I.S. Boltenkov, E.V. Kolobkova, S.K. Evstropiev
Synthesis and characterization of transparent photocatalytic ZnO-Sm2O3 and ZnO-Er2O3 coatings
Journal of Photochemistry and Photobiology A: Chemistry  367, 458, 2018
DOI: 10.1016/j.jphotochem.2018.09.016
/


[5]. Colin Awungacha Lekelefac, Johannes Hild, Peter Czermak, Michael Herrenbauer
Photocatalytic Active Coatings for Lignin Degradation in a Continuous Packed Bed Reactor
International Journal of Photoenergy  2014, 1, 2014
DOI: 10.1155/2014/502326
/


[6]. Seied Mahdi Pourmortazavi, Mehdi Rahimi-Nasrabadi, Farhad Ahmadi, Mohammad Reza Ganjali
CuCO3 and CuO nanoparticles; facile preparation and evaluation as photocatalysts
Journal of Materials Science: Materials in Electronics  29(11), 9442, 2018
DOI: 10.1007/s10854-018-8977-4
/


[7]. Iqbal M. I. Ismail, M. Aslam, T. Almeelbi, S. Chandrasekaran, A. Hameed
Ce3+ impregnated ZnO: a highly efficient photocatalyst for sunlight mediated mineralization
RSC Adv.  4(31), 16043, 2014
DOI: 10.1039/C4RA00097H
/


[8]. Yousef Fazli, Seied Mahdi Pourmortazavi, Iraj Kohsari, Meisam Sadeghpour Karimi, Majid Tajdari
Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles
Journal of Materials Science: Materials in Electronics  27(7), 7192, 2016
DOI: 10.1007/s10854-016-4683-2
/


[9]. S. K. Evstropiev, L. L. Lesnykh, N. V. Nikonorov, A. V. Karavaeva, E. V. Kolobkova, K. V. Oreshkina, L. Yu. Mironov, I. V. Bagrov
Transparent ZnO–SnO2 Photocatalytic Nanocoatings Prepared by the Polymer–Salt Method
Optics and Spectroscopy  126(4), 431, 2019
DOI: 10.1134/S0030400X19040064
/


[10]. S.K. Evstropiev, V.N. Vasilyev, N.V. Nikonorov, E.V. Kolobkova, N.A. Volkova, I.A. Boltenkov
Photoactive ZnO nanosuspension for intensification of organics contaminations decomposition
Chemical Engineering and Processing - Process Intensification  134, 45, 2018
DOI: 10.1016/j.cep.2018.10.020
/


[11]. S.K. Evstropiev, L.V. Lesnykh, A.V. Karavaeva, N.V. Nikonorov, K.V. Oreshkina, L.Yu. Mironov, S.Yu. Maslennikov, E.V. Kolobkova, V.N. Vasilyev, I.V. Bagrov
Intensification of photodecomposition of organics contaminations by nanostructured ZnO-SnO2 coatings prepared by polymer-salt method
Chemical Engineering and Processing - Process Intensification  142, 107587, 2019
DOI: 10.1016/j.cep.2019.107587
/


[12]. S.K. Evstropiev, A.V. Karavaeva, K.V. Dukelskii, V.M. Kiselev, K.S. Evstropyev, N.V. Nikonorov, E.V. Kolobkova
Transparent bactericidal coatings based on zinc and cerium oxides
Ceramics International  43(16), 14504, 2017
DOI: 10.1016/j.ceramint.2017.07.093
/


[13]. Subas K Muduli, Songling Wang, Shi Chen, Chin Fan Ng, Cheng Hon Alfred Huan, Tze Chien Sum, Han Sen Soo
Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes
Beilstein Journal of Nanotechnology  5, 517, 2014
DOI: 10.3762/bjnano.5.60
/


References

[1]. Matthews, R. W. Water Res. 1991, 25, 1169-1176.
http://dx.doi.org/10.1016/0043-1354(91)90054-T

[2]. Tanaka, K.; Padermpole, K.; Hisanaga, T. Water Res. 2000, 34, 327-333.
http://dx.doi.org/10.1016/S0043-1354(99)00093-7

[3]. Sharma, A.; Rao, P.; Mathur, R. P.; Ameta, S. C. Photochem. Photobio. 1995, 86, 197-200.
http://dx.doi.org/10.1016/1010-6030(94)03933-L

[4]. Hong, R. Y.; Li, J. H.; Chen, L. L.; Liu, D. Q.; Li, H. Z.; Zheng, Y.; Ding, J. Powder Technol. 2009, 189, 426-432.
http://dx.doi.org/10.1016/j.powtec.2008.07.004

[5]. Gouvea, C. A. K.; Wypych, F.; Moraes, S. G.; Dura’n, N.; Peralta, Z. P. Chemosphere 2000, 40(4), 427-432.
http://dx.doi.org/10.1016/S0045-6535(99)00312-4

[6]. Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Sol. Energ. Mat. Sol. C. 2003, 77(1), 65-82.
http://dx.doi.org/10.1016/S0927-0248(02)00255-6

[7]. Madhu, G. M.; Raj, M. A. L. A.; Pai, K. V. K. J. Environ. Biol. 2009, 30(2), 259-264.

[8]. Siegel, R. W.; Fujita F. F. (Ed.), Nanophase Materials: Synthesis, Structure, and Properties, Springer Series in Material Science, 27, Springer-Verlag. 1994.

[9]. Sunandan, B.; Jaisai, M.; Imani, R.; Nazhad, M. M.; Dutta, J. Sci. Technol. Adv. Mat. 2010, 11(5), 1-7.

[10]. Mansi, C.; Singh, K.; Sandhu, I. S.; Bhatti, H. S. Nanoscale Res. Let. 2011, 6, 438.
http://dx.doi.org/10.1186/1556-276X-6-438
PMid:21711502 PMCid:3211856

[11]. Gerischer, H.; Heller, A. J. Phys. Chem. 1991, 95, 5261-5267.
http://dx.doi.org/10.1021/j100166a063

[12]. Cheng, S.; Nickel, U. Chem. Commun. 1996, 2, 133-134.
http://dx.doi.org/10.1039/cc9960000133

[13]. Madhu, G. M.; Raj, M. A. L. A.; Pai, K. V. K.; Rao, S. Indian J. Chem. Techn. 2007, 14, 139-144.

[14]. Gouvea, C. A. K.; Wypych, F.; Moraes, S. G.; Dura’n, N.; Nagata, N.; Peralta-Zamor, P. Chemosphere 2000, 40(4), 433-440.
http://dx.doi.org/10.1016/S0045-6535(99)00313-6

[15]. Wenzhong, S.; Zhijie, L.; Hui, W.; Yihong, L.; Qingjie, G.; Yuanli, Z. J. Hazard. Mater. 2008, 152, 172-175.
http://dx.doi.org/10.1016/j.jhazmat.2007.06.082
PMid:17689008

[16]. Chakrabarti, S.; Dutta, B. K. J. Hazard. Mater. 2004, B112, 269-278.
http://dx.doi.org/10.1016/j.jhazmat.2004.05.013
PMid:15302448

[17]. Siriwong, C.; Liewhiran, C.; Wetchakun, N.; Phanichphant, S. Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International. “Characterization and photocatalytic activity of Pd-doped ZnO nanoparticles synthesized by flame spray pyrolysis”, Chiang Mai Univ., Chiang Mai, Thailand, August 5, 2008, 869-874.

[18]. Saravanan, R.; Shankar, H.; Prakash, T.; Narayanan, V.; Stephen, A. Mater. Chem. Phys. 2011, 125(1-2), 277-280.
http://dx.doi.org/10.1016/j.matchemphys.2010.09.030

[19]. Ruh, U.; Dutta, J. J. Hazard. Mater. 2008, 156, 194-200.
http://dx.doi.org/10.1016/j.jhazmat.2007.12.033
PMid:18221834

[20]. Jianfeng, W. U.; Feng, L.; Xiaohong, X.; Hao, C.; Zhenggang, R.; Yu, X. J. Chinese Ceram. Soc. 2010, 38(12), 2230-2235.

[21]. Alanis-Oaxaca, R.; Jimenez, B. J. J. Mex. Chem. Soc. 2010, 54(3), 164-168.

[22]. Ali, R.; Siew, O. B. J. Teknologi 2006, 45(F), 31-42.

[23]. Magesh, G.; Viswanathan, B.; Vishwanath, R. P.; Vardarajan, T. K. Indian J. Chem. 2009, 48A, 480-488.

[24]. Joint Committee on Powder Diffraction Standards, Powder Diffraction File, Card no: 89-8435.

[25]. Joint Committee on Powder Diffraction Standards, Powder Diffraction File, Card no: 36-1451.

[26]. Sakatani, Y.; Grosso, D.; Nicole, L.; Boissiere, C.; Soler, I. G. J. de A. A.; Sanchez, C. J. Mater. Chem. 2006, 16, 77-82.
http://dx.doi.org/10.1039/b512824m

[27]. Zhu, C.; Wang, L.; Kong, L.; Yang, X.; Zheng, S.; Chen, F.; Maizhi, F.; Zong, H. Chemosphere 2000, 41, 303-309.
http://dx.doi.org/10.1016/S0045-6535(99)00487-7

[28]. Epling, G. A.; Lin, C. Chemosphere 2002, 46, 561-570.
http://dx.doi.org/10.1016/S0045-6535(01)00173-4

[29]. Guettai, N.; Ait, A. H. Desalination 2005, 185, 427-437.
http://dx.doi.org/10.1016/j.desal.2005.04.048

[30]. Assabane, A.; Ait Ichou, Y.; Tahiri, H.; Guillard, C.; Hermann, J. M. Appl. Catal. B-Environ. 2000, 24, 71-87.
http://dx.doi.org/10.1016/S0926-3373(99)00094-6

[31]. Chen, D.; Ray, A. K. Appl. Catal. B-Environ. 1999, 23, 143-157.
http://dx.doi.org/10.1016/S0926-3373(99)00068-5

[32]. Daneshvar, N.; Salari, D.; Niaei, A.; Rasoulifard, M. H.; Khataee, A. R. J. Environ. Sci. Heal. A 2005, 40(8), 1605-1617.

[33]. Chung, L. W.; Tan, Y. N.; Mohamed, A. R. J. Nanotech. 2011, 904629, 1-9.


How to cite


Vuppala, V.; Motappa, M.; Venkata, S.; Sadashivaiah, P. Eur. J. Chem. 2012, 3(2), 191-195. doi:10.5155/eurjchem.3.2.191-195.564
Vuppala, V.; Motappa, M.; Venkata, S.; Sadashivaiah, P. Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst. Eur. J. Chem. 2012, 3(2), 191-195. doi:10.5155/eurjchem.3.2.191-195.564
Vuppala, V., Motappa, M., Venkata, S., & Sadashivaiah, P. (2012). Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst. European Journal of Chemistry, 3(2), 191-195. doi:10.5155/eurjchem.3.2.191-195.564
Vuppala, Venkatesham, Madhu Gattumane Motappa, Satyanarayana Suggala Venkata, & Preetham Halugondanahalli Sadashivaiah. "Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst." European Journal of Chemistry [Online], 3.2 (2012): 191-195. Web. 21 Sep. 2019
Vuppala, Venkatesham, Motappa, Madhu, Venkata, Satyanarayana, AND Sadashivaiah, Preetham. "Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst" European Journal of Chemistry [Online], Volume 3 Number 2 (30 June 2012)

DOI Link: https://doi.org/10.5155/eurjchem.3.2.191-195.564

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.