European Journal of Chemistry 2012, 3(3), 340-347 | doi: https://doi.org/10.5155/eurjchem.3.3.340-347.614 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes


Avat Arman Taherpour (1,*) , Masomeh Tayebi-Suraki (2) , Nosratollah Mahdizadeh (3)

(1) Department of Organic Chemistry, Faculty of Chemistry, Razi University, P.O. Box: 67149-67346, Kermanshah, Iran
(2) Chemistry Department, Faculty of Science, Islamic Azad University, 38135-567, Arak, Iran
(3) Department of Organic Chemistry, Faculty of Chemistry, Razi University, P.O. Box: 67149-67346, Kermanshah, Iran
(*) Corresponding Author

Received: 13 Apr 2012 | Accepted: 11 Jul 2012 | Published: 30 Sep 2012 | Issue Date: September 2012

Abstract


The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerenes. Fullerenes (buckministerfullerene) are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerene C60 derivatives such as alkynyldihydrofullerene (1-alkynyl-C60 carbanion) and other molecules are thought to involve the transfer of electrons between molecules surrounding the fullerene cage. One class of electron-transfer molecules has introduced as [X-UT-Y][R-C60M+](R=tert-Bu- & H–C≡C-; M=Li & K). The supramolecular complexes [X-UT-Y] (1-9) and [R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) are shown to possess a previously unreported host-guest interaction for electron transfer processes. The unsaturated, thiocrown ethers (1-9, with cis-geometry) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively) are a group of crown ethers that display interesting physiochemical properties in light of their conformational restriction compared to a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate the structural data to the various chemical and physical properties. To establish a good relationship between the structures of 1-9 with derivatives of alkynyldihydrofullerene (1-alkynyl-C60 carbanion) as [R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) in DMSO and THF solvents 12-38, an index (mcs) is utilized. This index is the ratio of the sum of the number of carbon atoms (nc) and the number of sulfur atoms (ns) with the product of these two numbers for 1-9. In this study, were investigated the relationships between this index and the first to third free energies of electron transfer (ΔGet(n); n=1-3, which is given by the Rehm-Weller equation) between 1-9 and [R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) as [X-UT-Y][R-C60M+](R=tert-Bu- & H–C≡C-; M=Li & K) supramolecular complexes in DMSO and THF solvents. The first to third free energies of electron transfer and the kinetic rate constants of the electron transfers, ΔG#et(n) and ket (n=1-3), respectively, were also calculated for [X-UT-Y][R-C60M+] (R=tert-Bu- & H–C≡C-; M=Li & K) in DMSO and THF, in accordance with the Marcus theory.

3_3_340_347_800


Keywords


Fullerenes; Marcus theory; Non-IPR Carbon Cage; Rehm-Weller equation; Unsaturated thiocrown ethers; Alkynyldihydrofullerene derivatives

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.3.3.340-347.614

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 910 times | icon graph PDF Article downloaded 1742 times

Funding information


Islamic Azad University, Arak, Iran

Citations

/


[1]. Avat Arman Taherpour, Mohammad Rizehbandi, Fatemeh Jahanian, Ehsan Naghibi, Nosrat-Allah Mahdizadeh
Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters].C n complexes
Journal of Chemical Biology  9(1), 19, 2016
DOI: 10.1007/s12154-015-0139-z
/


References


[1]. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162-163.
http://dx.doi.org/10.1038/318162a0

[2]. Guhaa, S.; Nakamoto, K. Coord. Chem. Rev. 2005, 249, 1111-1132.
http://dx.doi.org/10.1016/j.ccr.2004.11.017

[3]. Murphy, T. A.; Pawlik, T. H; Weidinger, A.; Hohne, M.; Alcala, R.; Spath, J. M. Phys. Rev. Lett. 1996, 77, 1075-1078.
http://dx.doi.org/10.1103/PhysRevLett.77.1075
PMid:10062984

[4]. Billups, W. E. J. Am. Chem. Soc. 2005, 127(33), 11876.
http://dx.doi.org/10.1021/ja059725z

[5]. Wang, L. S.; Conceicao, C.; Jin, C.; Smalley, R. E. Chem. Phys. Lett. 1991, 182, 5-11.
http://dx.doi.org/10.1016/0009-2614(91)80094-E

[6]. Boltalina, O. V.; Ioffe, I. N.; Sorokin I. D.; Sidorov, L. N. J. Phys. Chem. 1997, 101(50), 9561-9563.
http://dx.doi.org/10.1021/jp972643f

[7]. Heflin, J. R.; Marciu, D.; Figura C.; Wang, S.; Burbank, P.; Stevenson, S.; Dorn, H. C. Appl. Phys. Lett. 1998, 72, 2788.
http://dx.doi.org/10.1063/1.121456

[8]. Zettergren, H.; Alcami, M.; Martin, F. Chem. Phys. Chem. 2008, 9(6), 861-866.
http://dx.doi.org/10.1002/cphc.200700670
PMid:18404775

[9]. Kato, H.; Taninaka, A.; Sugai, T.; Shinohara, H. J. Am. Chem. Soc. 2003, 125(26), 7782-7783.
http://dx.doi.org/10.1021/ja0353255
PMid:12822979

[10]. Slanina, Z.; Chen, Z.; Schleyer, P. V. R.; Uhlik, F.; Lu, X.; Nagase, S. J. Phys. Chem. A. 2006, 110(6), 2231-2234.
http://dx.doi.org/10.1021/jp055894u
PMid:16466260

[11]. Lu, X.; Nikawa, H.; Nakahodo, T.; Tsuchiya, T.; Ishitsuka, M. O.; Maeda, Y.; Akasaka, T.; Toki, M.; Sawa, H.; Slanina, Z.; Mizorogi, N.; Nagase, S. J. Am. Chem. Soc. 2008, 130(28), 9129-9136.
http://dx.doi.org/10.1021/ja8019577
PMid:18570421

[12]. Wakahara, T.; Nikawa, H.; Kikuchi, T.; Nakahodo, T.; Aminur Rahman, G. M.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Yamamoto, K.; Mizorogi, N.; Slanina Z.; Nagase, S. J. Am. Chem. Soc. 2006, 128(44), 14228-14229.
http://dx.doi.org/10.1021/ja064751y
PMid:17076475

[13]. Kobayashi, K.; Nagase, S.; Yoshida M.; Osawa, E. J. Am. Chem. Soc. 1997, 119(51), 12693-12694.
http://dx.doi.org/10.1021/ja9733088

[14]. Slanina, Z.; Kobayashi, K.; Nagase, S. Chem. Phys. Lett. 2003, 372(5-6), 810-814.
http://dx.doi.org/10.1016/S0009-2614(03)00519-0

[15]. Slanina, Z.; Ishimura, K.; Kobayashi K.; Nagase, S. Chem. Phys. Lett. 2004, 384, 114-118.
http://dx.doi.org/10.1016/j.cplett.2003.11.097

[16]. Lu, X.; Nikawa H.; Nakahodo T.; Tsuchiya, T.; Ishitsuka, M. O; Maeda, Y.; Akasaka, T.; Toki, M.; Sawa, H.; Slanina, Z.; Mizorogi N.; Nagase, S. J. Am. Chem. Soc. 2008, 130(28), 9129-9136.
http://dx.doi.org/10.1021/ja8019577
PMid:18570421

[17]. Wang, C.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata M.; Shinohara, H. Nature 2000, 408, 426.
http://dx.doi.org/10.1038/35044195
PMid:11100714

[18]. Stevenson, S.; Fowler, P. W; Heine, T.; Duchamp, J. C.; Rice, G.; Glass, T.; Harich, K.; Hajdu, E.; Bible, R.; Dorn, H. C. Nature 2000, 408, 427-428.
http://dx.doi.org/10.1038/35044199
PMid:11100715

[19]. Shi, Z.; Wu, X.; Wang, C.; Lu X.; Shinohara, H. Angew. Chem. Int. Ed. 2006, 45, 2107-2111.
http://dx.doi.org/10.1002/anie.200503705
PMid:16498689

[20]. Beavers, C. M.; Zuo, T.; Duchamp, J. C.; Harich, K.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2006, 128(35), 11352-11353.
http://dx.doi.org/10.1021/ja063636k
PMid:16939248

[21]. Yang, S.; Popov, A. A.; Dunsch, L. Angew. Chem. Int. Ed. 2007, 46, 1256-1259.
http://dx.doi.org/10.1002/anie.200603281
PMid:17211915

[22]. Slanina, Z.; Chen, Z.; Schleyer, P. R.; Uhlik, F.; Lu, X.; Nagase, S. J. Phys. Chem. A. 2006, 110, 2231-2234.
http://dx.doi.org/10.1021/jp055894u
PMid:16466260

[23]. Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2007, 129(38), 11835-11849.
http://dx.doi.org/10.1021/ja073809l
PMid:17760444

[24]. Park, S. S.; Liu, D.; Hagelberg, F. J. Phys. Chem. A. 2005, 109(39), 8865-8873.
http://dx.doi.org/10.1021/jp0516339
PMid:16834290

[25]. Curry, J. D. J. Exp. Biol. 1999, 202, 3285-3294.

[26]. Kamat, S.; Su, X.; Ballarini, R.; Heuer, A. H. Nature 2000, 405, 1036-1040.
http://dx.doi.org/10.1038/35016535
PMid:10890440

[27]. Murata, Y.; Motoyama, K.; Komatsu, K.; Wan, T. S. M. Tetrahedron, 1996, 52(14), 5077-5090.
http://dx.doi.org/10.1016/0040-4020(96)00115-9

[28]. Bhyrappa, P. D. W.; Paul, P.; Stinchcombe, P.; Bolskar, J.; Sun, R. D.; Reed, C. A. J. Am. Chem. Soc. 1995, 117, 2907-2914.
http://dx.doi.org/10.1021/ja00115a024

[29]. Wudl, F.; Hirsh, A.; Khemani, K. C.; Suzuki, T.; Allemand, P. M.; Koch, A.; Eckert, H., Srdanov, G.; Webb, H. M. In Fullerenes Synthesis, Properties, and Chemistry of Large Carbon Clusters; Hammond, G. S.; Kuck, V. J.; Eds.; ACS Symposium Series 48, American Chemical Society: Washington, DC, 1992, 161-175.

[30]. Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 766-768.
http://dx.doi.org/10.1002/anie.199207661

[31]. Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. 1992, 114, 9697-9699.
http://dx.doi.org/10.1021/ja00050a081

[32]. Charton, M. In Progress in Physical Organic Chemistry, Ed.; rw Taft, Wiley: New York, 1981, Vol. 13, p. 119-251.

[33]. Anderson; H. L.; Faust, R.; Rubin, Y.; Diederich, F. Angew. Chem. 1994, 106, 1427-1429.

[34]. Tsuchiya, T.; Shimizu, T.; Kamigata, N. J. Am. Chem. Soc. 2001, 123(47), 11534-11538.
http://dx.doi.org/10.1021/ja0102742
PMid:11716706

[35]. Tsuchiya, T.; Kurihara, H.; Sato, K.; Wakahara, T.; Akasaka, T.; Shimizu, T.; Kamigata, N.; Mizorogi N.; Nagase, S. Chem. Commun. 2006, 20, 3585-3587.
http://dx.doi.org/10.1039/b606183d
PMid:17047772

[36]. Anderson, M. R.; Dorn, H. C.; Stevenson, S. A. Carbon 2000, 38, 1663-1670.
http://dx.doi.org/10.1016/S0008-6223(00)00089-0

[37]. Cooper, S. R. Acc. Chem. Res. 1988, 21(4), 141-146.
http://dx.doi.org/10.1021/ar00148a002

[38]. Blake, A. J.; Schroder, M.; Advances in Inorganic Chemistry, Ed. Sykes, A. G., Academic Press. Inc.: New York, 1990, Vol. 35, p 2 and references therein.

[39]. Rawle, S. C.; Cooper, S. R. J. Chem. Soc., Chem. Commun. 1987, 4, 308-309.

[40]. Parker, D. Macrocycle Synthesis: A Practical Approach, Ed., Oxford University Press: New York, 1996.

[41]. Pedersen, C. J. J. Org. Chem. 1971, 36(2), 254-257.
http://dx.doi.org/10.1021/jo00801a003

[42]. Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81(4), 365-414.
http://dx.doi.org/10.1021/cr00044a003

[43]. Nakayama, J.; Kaneko, A.; Sugihara, Y.; Ishii, A. Tetrahedron. 1999, 55(33), 10057-10066.
http://dx.doi.org/10.1016/S0040-4020(99)00540-2

[44]. Weaver, J. H.; Chai, Y.; Kroll, G. H.; Jin, C.; Ohno, T. R.; Haufler, R. E.; Guo, T.; Alford, J. M.; Conceicao, J.; Chibante, L. P. F.; Jain, A.; Palmer, G.; Smalley, R. E. Chem. Phys. Lett. 1992, 190(5), 460-464.
http://dx.doi.org/10.1016/0009-2614(92)85173-8

[45]. Smalley, R. E.; Hamond, G. S.; Kuck, V. J.; Editor, Fullerenes, Washington DC: American Chemical Society, pp. 1992, 141-59.

[46]. Yannoni, C. S.; Hoinkis, M.; De Vries, M. S.; Bethune, D. S.; Salem, J. R.; Crowder, M. S.; Johnson R. D.; Robert, D. Science 1992, 256, 1191-1192.
http://dx.doi.org/10.1126/science.256.5060.1191
PMid:17795216

[47]. Ruoff, R. S.; Kadish, K. M.; Boulas, P.; Chen, E. C. M. J. Phys. Chem. 1995, 99(21), 8843-8850.
http://dx.doi.org/10.1021/j100021a060

[48]. Fowler, P. W. Manolopoulos, D. E.; In: An Atlas of Fullerenes, Vol. 30, Oxford: Clarendon Press, 1995.

[49]. Hoffman, K. R.; Delapp, K.; Andrews, H.; Sprinkle, P.; Nickels, M.; Norris, B. J. Lumin. 1995, 66-67(1-6), 244-248.

[50]. Dennis, T. J. S.; Kai, T.; Tomiyama, T.; Shinohara, H. Chem. Commun. 1998, 5, 619-620.
http://dx.doi.org/10.1039/a708025e

[51]. Stevenson, S.; Dorn, H. C.; Burbank, P. M.; Harich, K.; Haynes, J. Kiang, C. H.; Salem, J. R.; de Vries, M. S.; Van Loosdrecht, P. H. M.; Johnson, R. D.; Yannoni, C. S.; Bethune, D. S. Anal. Chem. 1994, 66(17), 2675-2679.
http://dx.doi.org/10.1021/ac00089a013

[52]. Iiduka, Y.; Wakahara, T.; Nakajima, K.; Tsuchiya, T.; Nakahodo, T.; Maeda, Y.; Akasaka, T.; Mizorogi N.; Nagase, S. Chem. Commun. 2006, 19, 2057-2059.
http://dx.doi.org/10.1039/b601738j
PMid:16767274

[53]. Slanina, Z.; Kobayashi, K.; Nagase, S. J. Chem. Phys. 2004, 120, 3397-3400.

[54]. Nagase, S.; Kobayashi, K. Chem. Phys. Lett. 1994, 231(2-3), 319-324.
http://dx.doi.org/10.1016/0009-2614(94)01261-X

[55]. Hansen, P. J.; Jurs, P. J. Chem. Edu. 1988, 65, 574-580.
http://dx.doi.org/10.1021/ed065p574

[56]. Hosoya, H. Bull. Chem. Soc. Jpn. 1971, 44, 2332-2339.
http://dx.doi.org/10.1246/bcsj.44.2332

[57]. Randic, M. Acta Chim. Slov. 1998, 4, 239-252.

[58]. Rucker G.; Rucker, C. J. Chem. Inf. Comput. Sci. 1999, 39, 788-802.
http://dx.doi.org/10.1021/ci9900175

[59]. Wiener, H. J. Am. Chem. Soc. 1947, 69, 17-20.
http://dx.doi.org/10.1021/ja01193a005
PMid:20291038

[60]. Du, Y. P.; Liang, Y. Z.; Li B. Y.; Xu, C. J. J. Chem. Inf. Comput. Sci. 2002, 42, 1128-1138.

[61]. Randic, M. J. Am. Chem. Soc. 1975, 97, 6609-6615.
http://dx.doi.org/10.1021/ja00856a001

[62]. Sabljic A.; Trinajstic, N. Acta Pharm. Ugosl. 1981, 31, 189-214.

[63]. Sybold, P. G.; May, M.; Bagal, U. A. J. Chem. Edu. 1987, 64(7), 575-582.
http://dx.doi.org/10.1021/ed064p575

[64]. Kier L. B.; Hall, L. H.; Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

[65]. Randic, M. J. Math. Chem. 1991, 7, 155-168.
http://dx.doi.org/10.1007/BF01200821

[66]. Randic, M.; and Mills, D.; Basak, S. C. Int. J. Quantum Chem. 2000, 80, 1199-1209.
http://dx.doi.org/10.1002/1097-461X(2000)80:6<1199::AID-QUA6>3.0.CO;2-M

[67]. Randic, M.; Plavsic; D.; Lers, N. J. Chem. Inf. Comput. Sci. 2001, 41, 657-662
http://dx.doi.org/10.1021/ci000118z

[68]. Randic, M.; Basak, S. C. J. Chem. Inf. Comput. Sci. 2001, 41, 614-618.
http://dx.doi.org/10.1021/ci000114u

[69]. Randic. M.; Pompe, M. J. Chem. Inf. Comput. Sci. 2001, 41, 575-581.
http://dx.doi.org/10.1021/ci0001029

[70]. Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-Activity, Research Studies Press, John Wiley and Sons: Letchworth, England, 1986.

[71]. Gutman, I.; Randic, M. Chem. Phys. Lett. 1977, 47, 15-19.
http://dx.doi.org/10.1016/0009-2614(77)85296-2

[72]. Wiener, H. J. Am. Chem. Soc. 1947, 69(1), 17-20.
http://dx.doi.org/10.1021/ja01193a005
PMid:20291038

[73]. Kier, L. B. Quant. Struc. Act. Relat. 1985, 4, 109-116.
http://dx.doi.org/10.1002/qsar.19850040303

[74]. Kier L. B.; Hall, L. H. Molecular Structure Description: The Electrotopological State, Academic Press, New York, 1999.

[75]. Balaban, A. Chem. Phys. Lett. 1982, 89(5), 399-404.
http://dx.doi.org/10.1016/0009-2614(82)80009-2

[76]. Hu, Q. N.; Liang, Y. Z. Internet Electron. J. Mol. Des. 2004, 3(6), 335-349.

[77]. Barysz, M.; Plavsic, D.; Trinajstic, N. Match. 1986, 19, 89-116.

[78]. Estrada, E. Chem. Phys. Lett. 2008, 463(4-6), 422-425.
http://dx.doi.org/10.1016/j.cplett.2008.08.074

[79]. Taherpour A. A.; Shafiee, F. J. Mol. Struct., Theochem. 2005, 726, 183-188.
http://dx.doi.org/10.1016/j.theochem.2005.03.053

[80]. Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR: Hydrophobic, Electronic, Steric Constants, ACS, Washington, DC, USA, 1995.

[81]. Bundy, J. G.; Morriss, A. W. J.; Durham, D. G.; Campbell C. D.; Paton, G. I. Chemosphere. 2001, 42, 885-892.
http://dx.doi.org/10.1016/S0045-6535(00)00178-8

[82]. Li, A.; Yalkowsky, S. H. Ind. Eng. Chem. Res. 1998, 37, 4470-4475.
http://dx.doi.org/10.1021/ie980232v

[83]. Bolboaca, S. D.; Jantschi, L. Int. J. Mol. Sci. 2007, 8, 335-345.
http://dx.doi.org/10.3390/i8040335

[84]. Slanina, Z.; Chao, M. C.; Lee, S. L.; Gutman, I. J. Serb. Chem. Soc. 1997, 62(3), 211-217.

[85]. Plavsic, D.; Nikolic, S.; Trinajstic, N.; Mihalic, Z. J. Math. Chem. 1993, 12, 235-250.
http://dx.doi.org/10.1007/BF01164638

[86]. Taherpour, A. A. Full., Carb. Nanot., Carb. Nanostruct. 2007, 15, 405-415.
http://dx.doi.org/10.1080/15363830701657776

[87]. Taherpour, A. A. Full., Carb. Nanot., Carb. Nanostruct. 2008, 16(2), 142-153.
http://dx.doi.org/10.1080/15363830801890582

[88]. Taherpour, A. A. Full., Carb. Nanot., Carb. Nanostruct. 2009, 17(2), 171- 186.
http://dx.doi.org/10.1080/15363830802672096

[89]. Taherpour, A. A.; Asadi, T. Full., Carb. Nanot., Carb. Nanostruct. 2011, 19, 166-181.
http://dx.doi.org/10.1080/15363831003782882

[90]. Taherpour, A. A. Phosph. Sulf. Silic. 2010, 185, 422-432.
http://dx.doi.org/10.1080/10426500902812415

[91]. Murata, Y.; Motoyama, K.; Komatsu, K.; Wan, T. S. M. Tetrahedron 1996, 52, 5077-5090
http://dx.doi.org/10.1016/0040-4020(96)00115-9

[92]. Rehm, A.; Weller, A. Isr. J. Chem. 1970, 8, 259-271.

[93]. Marcus, R. A. Modern Phys. 1993, 65(3), 599-610.
http://dx.doi.org/10.1103/RevModPhys.65.599

[94]. Andrea, M. Marcus Theory for Electron Transfer a short introduction MPIP-Journal Club-Mainz-January 29, 2008.

[95]. Barbara P. F. J. Phys. Chem. 1996, 100, 13148-13161.

[96]. Newton, M. D. Chem. Rev. 1991, 91, 767-792.
http://dx.doi.org/10.1021/cr00005a007

[97]. Jortner, J.; Freed, K. F. J. Chem. Phys. 1970, 52, 6272-6291.

[98]. Marcus, R. A. J. Chem. Phys. 1965, 43, 679-701.

[99]. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta. 1985, 811, 265-322.
http://dx.doi.org/10.1016/0304-4173(85)90014-X

[100]. Kuzmin, M. G. XVIIth IUPAC Symposium on Photochemistry, Dresden, German, July 22-27, 2000, Book of Abstracts, p. 372.


How to cite


Taherpour, A.; Tayebi-Suraki, M.; Mahdizadeh, N. Eur. J. Chem. 2012, 3(3), 340-347. doi:10.5155/eurjchem.3.3.340-347.614
Taherpour, A.; Tayebi-Suraki, M.; Mahdizadeh, N. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes. Eur. J. Chem. 2012, 3(3), 340-347. doi:10.5155/eurjchem.3.3.340-347.614
Taherpour, A., Tayebi-Suraki, M., & Mahdizadeh, N. (2012). Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes. European Journal of Chemistry, 3(3), 340-347. doi:10.5155/eurjchem.3.3.340-347.614
Taherpour, Avat, Masomeh Tayebi-Suraki, & Nosratollah Mahdizadeh. "Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes." European Journal of Chemistry [Online], 3.3 (2012): 340-347. Web. 24 Oct. 2021
Taherpour, Avat, Tayebi-Suraki, Masomeh, AND Mahdizadeh, Nosratollah. "Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes" European Journal of Chemistry [Online], Volume 3 Number 3 (30 September 2012)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.3.3.340-347.614

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2012, 3(3), 340-347 | doi: https://doi.org/10.5155/eurjchem.3.3.340-347.614 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.