European Journal of Chemistry 2010, 1(3), 182-188 | doi: https://doi.org/10.5155/eurjchem.1.3.182-188.72 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow


Tanmoy Chakraborty (1) , Dulal Chandra Ghosh (2,*)

(1) Department of Chemistry, University of Kalyani, Kalyani, 741235, India
(2) Department of Chemistry, University of Kalyani, Kalyani, 741235, India
(*) Corresponding Author

Received: 23 Apr 2010 | Accepted: 07 May 2010 | Published: 29 Sep 2010 | Issue Date: September 2010

Abstract


Recently we have calculated the electronegativity of 103 elements of the periodic table relying upon the basic approach of Allred and Rochow. We carefully allayed the dimensional mismatch seemingly prevalent in all previous calculations so that the computed electronegativity is in its proper force dimension. Since the electronegativity is neither a physical observable nor a quantum mechanically determinable quantity, there is no bench-mark to perform any validity test of any scale of electronegativity. The descriptors of the real world such as charge distribution, bond energies, bond polarities and the dipole moments, force constants, atomic polar tensor and internuclear distances can be conceived in terms of electronegativity. Since the scale of Allred and Rochow is extremely popular among the scales of electronegativity, we have performed a validity test of the newly modified scale by calculating the dipole moments of as many as 48 molecules of widely diverse nature using the electronegativity values computed by us. The comparative study of computed dipole moments vis-à-vis the available experimental dipole moments of the corresponding molecules reveals that the present scale of electronegativity can be used realistically in representing the physical descriptors like charge distribution and dipole moments of molecules.

1_3_182_188_800


Keywords


Electronegativity; Scale of Allred and Rochow; Polarity of molecules; Dipole Moment; Bond component of dipole moment

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.1.3.182-188.72

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1372 times | icon graph PDF Article downloaded 454 times


References


[1]. Pritchard, H. O.; Skinner, H. A. Chem. Rev. 1955, 55, 745-786.
doi:10.1021/cr50004a005

[2]. Ghosh, D. C. J. Indian. Chem. Soc. 2003, 80, 527-533.

[3]. Coulson, C. A. Proc. R. Soc. London. Ser. A. 1951, 207, 63-73.
doi:10.1098/rspa.1951.0099

[4]. Fukui, K. Science. 1982, 218, 747- 754.
doi:10.1126/science.218.4574.747
PMid:17771019

[5]. Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570-3582.
doi:10.1021/ja01348a011

[6]. Pauling, L. The Nature of the Chemical Bond, 3rd edition, Cornell University Press, 1960.

[7]. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801-3807.

[8]. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547-3551.
doi:10.1021/ja01478a001

[9]. Putz, M. V.; Russo, N.; Sicilia, E. J. Phys. Chem. A. 2003, 107, 5461-5465.
doi:10.1021/jp027492h

[10]. Putz, M. V.; Russo, N.; Sicilia, E. Theor. Chem. Acc. 2005, 114, 38-45.
doi:10.1007/s00214-005-0641-4

[11]. Putz, M. V. Int. J. Quant. Chem. 2006, 106, 361-386.
doi:10.1002/qua.20787

[12]. Putz, M. V. J. Theor. Comput. Chem. 2007, 6, 33-47.
doi:10.1142/S0219633607002861

[13]. Putz, M. V. Int. J. Quant. Chem. 2009, 109, 733-738.
doi:10.1002/qua.21957

[14]. Frenking, G.; Krapp, A. J. Comput. Chem. 2007, 28, 15-24.
doi:10.1002/jcc.20543
PMid:17109434

[15]. Mulliken, R. S. J. Chem. Phys. 1934, 2, 782-793.

[16]. Gordy, W. Phys. Rev. 1946, 69, 604-607.
doi:10.1103/PhysRev.69.604

[17]. Allred, A. L.; Rochow, E. G. J. Inorg. Nuclear. Chem. 1958, 5, 264-268.

[18]. Gyftopoulos, E. P.; Hatsopoulos, G. Proc. Natl. Acad. Sci. U.S.A. 1968, 60, 786-793.
doi:10.1073/pnas.60.3.786

[19]. Murphy, L. R.; Meek, T. L.; Allred, A. L.; Allen, L. C. J. Phys. Chem. A. 2000, 104, 5867-5871.
doi:10.1021/jp000288e

[20]. Deb, B. M. Rev. Mod. Phys. 1973, 45, 23-43.
doi:10.1103/RevModPhys.45.22

[21]. Little Jr. E. J.; Jones, M. M. J. Chem. Educ. 1960, 37, 231-232.
doi:10.1021/ed037p231

[22]. Mande, C.; Deshmukh, P.; Deshmukh, P. C. J. Phys. B. Atom. Molec. Phys. 1977, 10, 2293-2300.
doi:10.1088/0022-3700/10/12/008

[23]. Mande, C.; Chattopadhyay, S.; Deshmukh, P.; Padma, R.; Deshmukh, P. Pramana 1990, 35, 397-403.
doi:10.1007/BF02845749

[24]. Ghosh, D. C.; Chakraborty, T.; Mandal, B. Theor. Chem. Acc. 2009, 124, 295-301.
doi:10.1007/s00214-009-0610-4

[25]. Ghosh, D. C.; Biswas, R.; Chakraborty, T.; Islam, N.; Rajak, S. K. J. Mol. Struct. (Theochem) 2008, 865, 60-67.
doi:10.1016/j.theochem.2008.06.020

[26]. Ghosh, D. C.; Biswas, R. Int. J. Mol. Sci. 2002, 3, 87-113.
doi:10.3390/i3020087

[27]. Ghosh, D. C.; Chakraborty, T. J. Mol. Struct. (Theochem) 2009, 906, 87-93.
doi:10.1016/j.theochem.2009.04.007

[28]. Ghosh, D. C.; Chakraborty, T. J. Mol. Struct. (Theochem) 2009, 916, 47-52.
doi:10.1016/j.theochem.2009.09.009

[29]. Ghosh, D. C. J. Theor. Comput. Chem. 2005, 4, 21-33.
doi:10.1142/S0219633605001556

[30]. Ghosh, D. C.; Islam, N.; Rajak, S. K. Int. J. Chem. Model. 2010, 2(4), 361-374.

[31]. Ghosh, D. C.; Islam, N.; Rajak, S. K. Int. J. Chem. Model. 2010, 2(4), 375-382.

[32]. Mulliken, R. S. J. Chem. Phys. 1935, 3, 573-585.

[33]. Dailey, B. P.; Townes, C. H. J. Chem. Phys. 1955, 23, 118-123.

[34]. Coulson, C. A. Valence, Oxford University Press, 1972.

[35]. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, 1969.

[36]. Ghosh, D. C.; Bhattacharyya, S. Int. J. Quant. Chem. 2005, 105, 270-279.
doi:10.1002/qua.20690

[37]. Pople, J. A.; Santry, D. P.; Segal, G. A J. Chem. Phys. 1965, 43, S129-S129.

[38]. Pople, J. A.; Segal, G. A. J. Chem. Phys. 1965, 43, S136-S136.

[39]. Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital Theory, McGraw-Hill, 1970.

[40]. Nethercot Jr, A. H. Chem. Phys. Lett. 1978, 59, 346-350.
doi:10.1016/0009-2614(78)89109-X

[41]. Barbe, J. J. Chem. Educ. 1983, 60, 640-641.
doi:10.1021/ed060p640

[42]. Nethercot Jr, A. H. Chem. Phys. 1981, 59, 297-313.
doi:10.1016/0301-0104(81)85173-7

[43]. Nethercot Jr, A. H. Phys. Rev. Lett. 1974, 33, 1088-1091.
doi:10.1103/PhysRevLett.33.1088

[44]. Meyer, W.; Rosmus, P. J. Chem. Phys. 1975, 63, 2356-2375.

[45]. Lovas, F. J.; Tiemann, E. J. Phys. Chem. Ref. Data. 1974, 3, 609-769.
doi:10.1063/1.3253146

[46]. Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2008, 15, 186-197.
doi:10.1002/chem.200800987


How to cite


Chakraborty, T.; Ghosh, D. Eur. J. Chem. 2010, 1(3), 182-188. doi:10.5155/eurjchem.1.3.182-188.72
Chakraborty, T.; Ghosh, D. Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow. Eur. J. Chem. 2010, 1(3), 182-188. doi:10.5155/eurjchem.1.3.182-188.72
Chakraborty, T., & Ghosh, D. (2010). Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow. European Journal of Chemistry, 1(3), 182-188. doi:10.5155/eurjchem.1.3.182-188.72
Chakraborty, Tanmoy, & Dulal Chandra Ghosh. "Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow." European Journal of Chemistry [Online], 1.3 (2010): 182-188. Web. 17 Jan. 2022
Chakraborty, Tanmoy, AND Ghosh, Dulal. "Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow" European Journal of Chemistry [Online], Volume 1 Number 3 (29 September 2010)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.1.3.182-188.72

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2010, 1(3), 182-188 | doi: https://doi.org/10.5155/eurjchem.1.3.182-188.72 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2022  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.