

Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow
Tanmoy Chakraborty (1)


(1) Department of Chemistry, University of Kalyani, Kalyani, 741235, India
(2) Department of Chemistry, University of Kalyani, Kalyani, 741235, India
(*) Corresponding Author
Received: 23 Apr 2010 | Accepted: 07 May 2010 | Published: 29 Sep 2010 | Issue Date: September 2010
Abstract
Recently we have calculated the electronegativity of 103 elements of the periodic table relying upon the basic approach of Allred and Rochow. We carefully allayed the dimensional mismatch seemingly prevalent in all previous calculations so that the computed electronegativity is in its proper force dimension. Since the electronegativity is neither a physical observable nor a quantum mechanically determinable quantity, there is no bench-mark to perform any validity test of any scale of electronegativity. The descriptors of the real world such as charge distribution, bond energies, bond polarities and the dipole moments, force constants, atomic polar tensor and internuclear distances can be conceived in terms of electronegativity. Since the scale of Allred and Rochow is extremely popular among the scales of electronegativity, we have performed a validity test of the newly modified scale by calculating the dipole moments of as many as 48 molecules of widely diverse nature using the electronegativity values computed by us. The comparative study of computed dipole moments vis-à-vis the available experimental dipole moments of the corresponding molecules reveals that the present scale of electronegativity can be used realistically in representing the physical descriptors like charge distribution and dipole moments of molecules.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.1.3.182-188.72
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


References
[1]. Pritchard, H. O.; Skinner, H. A. Chem. Rev. 1955, 55, 745-786.
doi:10.1021/cr50004a005
[2]. Ghosh, D. C. J. Indian. Chem. Soc. 2003, 80, 527-533.
[3]. Coulson, C. A. Proc. R. Soc. London. Ser. A. 1951, 207, 63-73.
doi:10.1098/rspa.1951.0099
[4]. Fukui, K. Science. 1982, 218, 747- 754.
doi:10.1126/science.218.4574.747
PMid:17771019
[5]. Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570-3582.
doi:10.1021/ja01348a011
[6]. Pauling, L. The Nature of the Chemical Bond, 3rd edition, Cornell University Press, 1960.
[7]. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801-3807.
[8]. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547-3551.
doi:10.1021/ja01478a001
[9]. Putz, M. V.; Russo, N.; Sicilia, E. J. Phys. Chem. A. 2003, 107, 5461-5465.
doi:10.1021/jp027492h
[10]. Putz, M. V.; Russo, N.; Sicilia, E. Theor. Chem. Acc. 2005, 114, 38-45.
doi:10.1007/s00214-005-0641-4
[11]. Putz, M. V. Int. J. Quant. Chem. 2006, 106, 361-386.
doi:10.1002/qua.20787
[12]. Putz, M. V. J. Theor. Comput. Chem. 2007, 6, 33-47.
doi:10.1142/S0219633607002861
[13]. Putz, M. V. Int. J. Quant. Chem. 2009, 109, 733-738.
doi:10.1002/qua.21957
[14]. Frenking, G.; Krapp, A. J. Comput. Chem. 2007, 28, 15-24.
doi:10.1002/jcc.20543
PMid:17109434
[15]. Mulliken, R. S. J. Chem. Phys. 1934, 2, 782-793.
[16]. Gordy, W. Phys. Rev. 1946, 69, 604-607.
doi:10.1103/PhysRev.69.604
[17]. Allred, A. L.; Rochow, E. G. J. Inorg. Nuclear. Chem. 1958, 5, 264-268.
[18]. Gyftopoulos, E. P.; Hatsopoulos, G. Proc. Natl. Acad. Sci. U.S.A. 1968, 60, 786-793.
doi:10.1073/pnas.60.3.786
[19]. Murphy, L. R.; Meek, T. L.; Allred, A. L.; Allen, L. C. J. Phys. Chem. A. 2000, 104, 5867-5871.
doi:10.1021/jp000288e
[20]. Deb, B. M. Rev. Mod. Phys. 1973, 45, 23-43.
doi:10.1103/RevModPhys.45.22
[21]. Little Jr. E. J.; Jones, M. M. J. Chem. Educ. 1960, 37, 231-232.
doi:10.1021/ed037p231
[22]. Mande, C.; Deshmukh, P.; Deshmukh, P. C. J. Phys. B. Atom. Molec. Phys. 1977, 10, 2293-2300.
doi:10.1088/0022-3700/10/12/008
[23]. Mande, C.; Chattopadhyay, S.; Deshmukh, P.; Padma, R.; Deshmukh, P. Pramana 1990, 35, 397-403.
doi:10.1007/BF02845749
[24]. Ghosh, D. C.; Chakraborty, T.; Mandal, B. Theor. Chem. Acc. 2009, 124, 295-301.
doi:10.1007/s00214-009-0610-4
[25]. Ghosh, D. C.; Biswas, R.; Chakraborty, T.; Islam, N.; Rajak, S. K. J. Mol. Struct. (Theochem) 2008, 865, 60-67.
doi:10.1016/j.theochem.2008.06.020
[26]. Ghosh, D. C.; Biswas, R. Int. J. Mol. Sci. 2002, 3, 87-113.
doi:10.3390/i3020087
[27]. Ghosh, D. C.; Chakraborty, T. J. Mol. Struct. (Theochem) 2009, 906, 87-93.
doi:10.1016/j.theochem.2009.04.007
[28]. Ghosh, D. C.; Chakraborty, T. J. Mol. Struct. (Theochem) 2009, 916, 47-52.
doi:10.1016/j.theochem.2009.09.009
[29]. Ghosh, D. C. J. Theor. Comput. Chem. 2005, 4, 21-33.
doi:10.1142/S0219633605001556
[30]. Ghosh, D. C.; Islam, N.; Rajak, S. K. Int. J. Chem. Model. 2010, 2(4), 361-374.
[31]. Ghosh, D. C.; Islam, N.; Rajak, S. K. Int. J. Chem. Model. 2010, 2(4), 375-382.
[32]. Mulliken, R. S. J. Chem. Phys. 1935, 3, 573-585.
[33]. Dailey, B. P.; Townes, C. H. J. Chem. Phys. 1955, 23, 118-123.
[34]. Coulson, C. A. Valence, Oxford University Press, 1972.
[35]. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, 1969.
[36]. Ghosh, D. C.; Bhattacharyya, S. Int. J. Quant. Chem. 2005, 105, 270-279.
doi:10.1002/qua.20690
[37]. Pople, J. A.; Santry, D. P.; Segal, G. A J. Chem. Phys. 1965, 43, S129-S129.
[38]. Pople, J. A.; Segal, G. A. J. Chem. Phys. 1965, 43, S136-S136.
[39]. Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital Theory, McGraw-Hill, 1970.
[40]. Nethercot Jr, A. H. Chem. Phys. Lett. 1978, 59, 346-350.
doi:10.1016/0009-2614(78)89109-X
[41]. Barbe, J. J. Chem. Educ. 1983, 60, 640-641.
doi:10.1021/ed060p640
[42]. Nethercot Jr, A. H. Chem. Phys. 1981, 59, 297-313.
doi:10.1016/0301-0104(81)85173-7
[43]. Nethercot Jr, A. H. Phys. Rev. Lett. 1974, 33, 1088-1091.
doi:10.1103/PhysRevLett.33.1088
[44]. Meyer, W.; Rosmus, P. J. Chem. Phys. 1975, 63, 2356-2375.
[45]. Lovas, F. J.; Tiemann, E. J. Phys. Chem. Ref. Data. 1974, 3, 609-769.
doi:10.1063/1.3253146
[46]. Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2008, 15, 186-197.
doi:10.1002/chem.200800987
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.1.3.182-188.72

















European Journal of Chemistry 2010, 1(3), 182-188 | doi: https://doi.org/10.5155/eurjchem.1.3.182-188.72 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.