European Journal of Chemistry

Computation of the dipole moment of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Allred and Rochow



Main Article Content

Tanmoy Chakraborty
Dulal Chandra Ghosh

Abstract

Recently we have calculated the electronegativity of 103 elements of the periodic table relying upon the basic approach of Allred and Rochow. We carefully allayed the dimensional mismatch seemingly prevalent in all previous calculations so that the computed electronegativity is in its proper force dimension. Since the electronegativity is neither a physical observable nor a quantum mechanically determinable quantity, there is no bench-mark to perform any validity test of any scale of electronegativity. The descriptors of the real world such as charge distribution, bond energies, bond polarities and the dipole moments, force constants, atomic polar tensor and internuclear distances can be conceived in terms of electronegativity. Since the scale of Allred and Rochow is extremely popular among the scales of electronegativity, we have performed a validity test of the newly modified scale by calculating the dipole moments of as many as 48 molecules of widely diverse nature using the electronegativity values computed by us. The comparative study of computed dipole moments vis-à-vis the available experimental dipole moments of the corresponding molecules reveals that the present scale of electronegativity can be used realistically in representing the physical descriptors like charge distribution and dipole moments of molecules.

1_3_182_188_800


icon graph This Abstract was viewed 1800 times | icon graph Article PDF downloaded 699 times

How to Cite
(1)
Chakraborty, T.; Ghosh, D. C. Computation of the Dipole Moment of Some Heteronuclear Diatomic Molecules in Terms of the Revised Electronegativity Scale of Allred and Rochow. Eur. J. Chem. 2010, 1, 182-188.

Article Details

Author Biographies

Tanmoy Chakraborty, Department of Chemistry, University of Kalyani, Kalyani, 741235, India

Research Scholar of Chemistry

Dept of Chemistry
University of Kalyani
Kalyani-India

Dulal Chandra Ghosh, Department of Chemistry, University of Kalyani, Kalyani, 741235, India

Professor of Chemistry

Dept of Chemistry
University of Kalyani
Kalyani-India

Share
Crossref - Scopus - Google - European PMC
References

[1]. Pritchard, H. O.; Skinner, H. A. Chem. Rev. 1955, 55, 745-786.
doi:10.1021/cr50004a005

[2]. Ghosh, D. C. J. Indian. Chem. Soc. 2003, 80, 527-533.

[3]. Coulson, C. A. Proc. R. Soc. London. Ser. A. 1951, 207, 63-73.
doi:10.1098/rspa.1951.0099

[4]. Fukui, K. Science. 1982, 218, 747- 754.
doi:10.1126/science.218.4574.747
PMid:17771019

[5]. Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570-3582.
doi:10.1021/ja01348a011

[6]. Pauling, L. The Nature of the Chemical Bond, 3rd edition, Cornell University Press, 1960.

[7]. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801-3807.

[8]. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547-3551.
doi:10.1021/ja01478a001

[9]. Putz, M. V.; Russo, N.; Sicilia, E. J. Phys. Chem. A. 2003, 107, 5461-5465.
doi:10.1021/jp027492h

[10]. Putz, M. V.; Russo, N.; Sicilia, E. Theor. Chem. Acc. 2005, 114, 38-45.
doi:10.1007/s00214-005-0641-4

[11]. Putz, M. V. Int. J. Quant. Chem. 2006, 106, 361-386.
doi:10.1002/qua.20787

[12]. Putz, M. V. J. Theor. Comput. Chem. 2007, 6, 33-47.
doi:10.1142/S0219633607002861

[13]. Putz, M. V. Int. J. Quant. Chem. 2009, 109, 733-738.
doi:10.1002/qua.21957

[14]. Frenking, G.; Krapp, A. J. Comput. Chem. 2007, 28, 15-24.
doi:10.1002/jcc.20543
PMid:17109434

[15]. Mulliken, R. S. J. Chem. Phys. 1934, 2, 782-793.

[16]. Gordy, W. Phys. Rev. 1946, 69, 604-607.
doi:10.1103/PhysRev.69.604

[17]. Allred, A. L.; Rochow, E. G. J. Inorg. Nuclear. Chem. 1958, 5, 264-268.

[18]. Gyftopoulos, E. P.; Hatsopoulos, G. Proc. Natl. Acad. Sci. U.S.A. 1968, 60, 786-793.
doi:10.1073/pnas.60.3.786

[19]. Murphy, L. R.; Meek, T. L.; Allred, A. L.; Allen, L. C. J. Phys. Chem. A. 2000, 104, 5867-5871.
doi:10.1021/jp000288e

[20]. Deb, B. M. Rev. Mod. Phys. 1973, 45, 23-43.
doi:10.1103/RevModPhys.45.22

[21]. Little Jr. E. J.; Jones, M. M. J. Chem. Educ. 1960, 37, 231-232.
doi:10.1021/ed037p231

[22]. Mande, C.; Deshmukh, P.; Deshmukh, P. C. J. Phys. B. Atom. Molec. Phys. 1977, 10, 2293-2300.
doi:10.1088/0022-3700/10/12/008

[23]. Mande, C.; Chattopadhyay, S.; Deshmukh, P.; Padma, R.; Deshmukh, P. Pramana 1990, 35, 397-403.
doi:10.1007/BF02845749

[24]. Ghosh, D. C.; Chakraborty, T.; Mandal, B. Theor. Chem. Acc. 2009, 124, 295-301.
doi:10.1007/s00214-009-0610-4

[25]. Ghosh, D. C.; Biswas, R.; Chakraborty, T.; Islam, N.; Rajak, S. K. J. Mol. Struct. (Theochem) 2008, 865, 60-67.
doi:10.1016/j.theochem.2008.06.020

[26]. Ghosh, D. C.; Biswas, R. Int. J. Mol. Sci. 2002, 3, 87-113.
doi:10.3390/i3020087

[27]. Ghosh, D. C.; Chakraborty, T. J. Mol. Struct. (Theochem) 2009, 906, 87-93.
doi:10.1016/j.theochem.2009.04.007

[28]. Ghosh, D. C.; Chakraborty, T. J. Mol. Struct. (Theochem) 2009, 916, 47-52.
doi:10.1016/j.theochem.2009.09.009

[29]. Ghosh, D. C. J. Theor. Comput. Chem. 2005, 4, 21-33.
doi:10.1142/S0219633605001556

[30]. Ghosh, D. C.; Islam, N.; Rajak, S. K. Int. J. Chem. Model. 2010, 2(4), 361-374.

[31]. Ghosh, D. C.; Islam, N.; Rajak, S. K. Int. J. Chem. Model. 2010, 2(4), 375-382.

[32]. Mulliken, R. S. J. Chem. Phys. 1935, 3, 573-585.

[33]. Dailey, B. P.; Townes, C. H. J. Chem. Phys. 1955, 23, 118-123.

[34]. Coulson, C. A. Valence, Oxford University Press, 1972.

[35]. Dewar, M. J. S. The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, 1969.

[36]. Ghosh, D. C.; Bhattacharyya, S. Int. J. Quant. Chem. 2005, 105, 270-279.
doi:10.1002/qua.20690

[37]. Pople, J. A.; Santry, D. P.; Segal, G. A J. Chem. Phys. 1965, 43, S129-S129.

[38]. Pople, J. A.; Segal, G. A. J. Chem. Phys. 1965, 43, S136-S136.

[39]. Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital Theory, McGraw-Hill, 1970.

[40]. Nethercot Jr, A. H. Chem. Phys. Lett. 1978, 59, 346-350.
doi:10.1016/0009-2614(78)89109-X

[41]. Barbe, J. J. Chem. Educ. 1983, 60, 640-641.
doi:10.1021/ed060p640

[42]. Nethercot Jr, A. H. Chem. Phys. 1981, 59, 297-313.
doi:10.1016/0301-0104(81)85173-7

[43]. Nethercot Jr, A. H. Phys. Rev. Lett. 1974, 33, 1088-1091.
doi:10.1103/PhysRevLett.33.1088

[44]. Meyer, W.; Rosmus, P. J. Chem. Phys. 1975, 63, 2356-2375.

[45]. Lovas, F. J.; Tiemann, E. J. Phys. Chem. Ref. Data. 1974, 3, 609-769.
doi:10.1063/1.3253146

[46]. Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2008, 15, 186-197.
doi:10.1002/chem.200800987

Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).