European Journal of Chemistry 2013, 4(4), 343-349. doi:10.5155/eurjchem.4.4.343-349.835

Investigation of hydrolysis and condensation of methyltriethoxysilane in aqueous systems


Jan Kurjata (1,*) , Krystyna Rozga-Wijas (2) , Wlodzimierz Stanczyk (3)

(1) Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
(2) Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
(3) Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
(*) Corresponding Author

Received: 24 May 2013, Accepted: 26 Jun 2013, Published: 31 Dec 2013

Abstract


An effective synthesis of methylethoxysilanes and emulsification of methyltriethoxysilane is described. Hydrolysis and condensation products of methyltriethoxysilane were identified and studied using 29Si NMR, mass spectrometry and infrared spectroscopy. The presented analyses are important from practical point of view, as the emulsion in question is used for hydrophobization of building materials and soil. The most striking finding is high stability of the low molecular products of hydrolysis - methylsilanetriol [MeSi(OH)3] and its dimer [(OH)2(Me)SiOSi(Me)(OH)2]. All of which were still present in the aqueous medium, after 40 days of storage at ambient conditions. This finding suggests that condensation processes leading to the formation of polymer network are slow in the emulsion and a large number of reactive hydroxyl groups are present in the system allowing for the effective hydrophobization of mineral material.

4_4_343_349

Keywords


Siloxanes; Hydrolysis; Ethoxysilanes Hydrophobization; Silane aqueous emulsions; Condensation intermediates

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.4.4.343-349.835

Article Metrics


This Abstract was viewed 791 times | PDF Article downloaded 488 times

Citations

/


[1]. Christoph Rücker, Klaus Kümmerer
Environmental Chemistry of Organosiloxanes
Chemical Reviews  115(1), 466, 2015
DOI: 10.1021/cr500319v
/


References

[1]. Emeleus, H. J.; Robinson, R. R. J. Chem. Soc. 1947, 1592-1594.

[2]. Benkeser, R. A.; Landesmann, H.; Foster, D. J. J. Am. Chem. Soc. 1952, 74, 648-650.
http://dx.doi.org/10.1021/ja01123a019

[3]. Frisch, K. C.; Shroff, P. D. J. Am. Chem. Soc. 1953, 75, 1249-1250.
http://dx.doi.org/10.1021/ja01101a511

[4]. Gilman, H.; Brook, A. G.; Miller, L. S. J. Am. Chem. Soc. 1953, 75, 3757-3759.
http://dx.doi.org/10.1021/ja01111a044

[5]. Shorr, L. M. J. Am. Chem. Soc. 1954, 76, 1390-1391.
http://dx.doi.org/10.1021/ja01634a076

[6]. Gruniger, H. R.; Calzaferri, G. Helv. Chim. Acta 1979, 62, 2547-2550.
http://dx.doi.org/10.1002/hlca.19790620806

[7]. Lukevics, E.; Dzintara, M. J. Organomet. Chem. 1985, 295, 265-315.
http://dx.doi.org/10.1016/0022-328X(85)80314-4

[8]. Lorenz, C.; Schubert, U. Chem. Ber. 1995, 128, 1267-1269.
http://dx.doi.org/10.1002/cber.19951281220

[9]. Blackwell, J. M.; Morrison, D. J.; Piers, W. E. Tetrahedron 2002, 41, 8247-8254.
http://dx.doi.org/10.1016/S0040-4020(02)00974-2

[10]. Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440-9441.
http://dx.doi.org/10.1021/ja961536g

[11]. Blackwell, J.; Piers, W. E.; Foster, K.; Beck, V. H. J. Org. Chem. 1999, 64, 4887 4892.
http://dx.doi.org/10.1021/jo9903003

[12]. Donath, S.; Milicz, H.; Mai, C. Wood Sci. Technol. 2004, 38, 555-566
http://dx.doi.org/10.1007/s00226-004-0257-1

[13]. Nami Karta, S.; Yoshimura, T.; Imamura, Y. Int. Biodeter. Biodegr. 2009, 63, 187-190.
http://dx.doi.org/10.1016/j.ibiod.2008.08.006

[14]. Prado, L. A. S.; Karthikeyan, C. S.; Schulze, K.; Nunes, S. P.; Torriani, I. L. J. Non-Cryst. Solids 2005, 351, 970-975.

[15]. Brus, J.; Kotlik, P. Stud. Conserv. 1996, 41, 109-117.
http://dx.doi.org/10.2307/1506521

[16]. Neumiller, P. J.; Racine, W. I. 2004, Patent No.: US 6, 740, 626, B2.

[17]. Nowacka, M.; Jesionowski, T. Physicochem. Probl. Miner. Process. 2012, 48(1), 209-218.

[18]. Kirchmeyer, S.; Mechtel, M.; Kasler, K. H. 2003, Patent No.: EP0960871.

[19]. Kirchmeyer, S.; Mechtel, M.; Kasler, K. H. 2001, Patent No.: US 6, 284, 834 B1.

[20]. Chen, M. J.; Osterholtz, F.; D.; Oak, D.; Chaves, A. 1997, Patent No.: WO 97/12940.

[21]. Przedecki, T.; Sztromajer, S.; Lebiedowski, M.; Lech, M. 1981, Patent No.: PL 102640 B1.

[22]. Kurjata, J.; Rozga-Wijas, K.; Stanczyk, W.; Lefik, M.; Wojciechowski, M.; Baryla, P. 2012, Polish Patent Appl. P. 401246

[23]. Legrow, G. E. 1992, Patent No.: US 5, 084, 589

[24]. Fletcher, H. J.; Hunter, M. J. J. Am. Chem. Soc. 1949, 71, 2922-2923.
http://dx.doi.org/10.1021/ja01176a100

[25]. Sprung, M. M.; Guenthur, F. O. J. Am. Chem. Soc. 1955, 77, 3990-3996.
http://dx.doi.org/10.1021/ja01620a013

[26]. Schmidt, H.; Scholze, H.; Kaiser, A. J. Non-Cryst. Solids 1948, 63, 1-11.

[27]. Hasegawa, I.; Sakka, S.; Kuroda, K.; Kato, C. J. Chromatogr. 1987, 410, 137-143.
http://dx.doi.org/10.1016/S0021-9673(00)90041-4

[28]. Hasegawa, I.; Sakka, S.; Sugahara, Y.; Kuroda, K.; Kato, C. J. Ceram. Soc. Jpn. 1990, 98, 647-652.
http://dx.doi.org/10.2109/jcersj.98.647

[29]. Bommel, M. J.; Bernards, T. N. M.; Boostra, A. H. J. Non-Cryst. Solids 1991, 128, 231-242.

[30]. Binker, C. J.; Scherer, G. W. Sol-Gel Science, Academic Press, New York, 1990, pp. 160-174.

[31]. Sugahara, Y.; Okada, S.; Kuroda, K.; Kato, C. J. Non-Cryst. Solids 1992, 139, 25-34.

[32]. Arkles, B.; Steinmetz, J. R.; Zazyczny, J.; Mehta, P. Silanes and Other Coupling Agents, pp. 91-104, Ed. K. L. Mittal, VSP, 1992.

[33]. Sugahara, Y.; Okada, S.; Sato, S.; Kuroda, K.; Kato, C. J. Non-Cryst. Solids 1994, 167, 24-28.

[34]. Chojnowski, J.; Cypryk, M.; Kazmierski, K.; Rozga, K. J. Non-Cryst. Solids. 1990, 125, 40-49.

[35]. Kazmierski, K.; Cypryk, M.; Chojnowski, J. Bull. Polon. Acad. Sci. 1992, 40(1), 65-71.

[36]. Varaprath, S.; Lehman, R. G. J. Environ. Polym. Degrad. 1997, 5(1), 17-31.

[37]. Varaprath, S.; Salyers, K. L.; Plotzke, K. P.; Nanavati, S. Drug Metab. Dispos. 1999, 27(11) 1267-1273.
PMid:10534311

[38]. Witucki, G L. J. Coating. Technol. 1993, 65 (822), 57-60.

[39]. Khonina, T. G.; Safronof, A. P.; Shadrina, E. V.; Ivanenko, M. V.; Suvorova, A. I.; Chupakhin, O. N. J. Colloid. 2012, 365, 81-89.

[40]. Chojnowski, J.; Rubinsztajn, S.; Wilczek, L. Macromolecules 1987, 20, 2345-2355.
http://dx.doi.org/10.1021/ma00176a004


How to cite


Kurjata, J.; Rozga-Wijas, K.; Stanczyk, W. Eur. J. Chem. 2013, 4(4), 343-349. doi:10.5155/eurjchem.4.4.343-349.835
Kurjata, J.; Rozga-Wijas, K.; Stanczyk, W. Investigation of hydrolysis and condensation of methyltriethoxysilane in aqueous systems. Eur. J. Chem. 2013, 4(4), 343-349. doi:10.5155/eurjchem.4.4.343-349.835
Kurjata, J., Rozga-Wijas, K., & Stanczyk, W. (2013). Investigation of hydrolysis and condensation of methyltriethoxysilane in aqueous systems. European Journal of Chemistry, 4(4), 343-349. doi:10.5155/eurjchem.4.4.343-349.835
Kurjata, Jan, Krystyna Rozga-Wijas, & Wlodzimierz Stanczyk. "Investigation of hydrolysis and condensation of methyltriethoxysilane in aqueous systems." European Journal of Chemistry [Online], 4.4 (2013): 343-349. Web. 21 Sep. 2019
Kurjata, Jan, Rozga-Wijas, Krystyna, AND Stanczyk, Wlodzimierz. "Investigation of hydrolysis and condensation of methyltriethoxysilane in aqueous systems" European Journal of Chemistry [Online], Volume 4 Number 4 (31 December 2013)

DOI Link: https://doi.org/10.5155/eurjchem.4.4.343-349.835

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.