European Journal of Chemistry 2020, 11(1), 6-14 | doi: | Get rights and content


Structural diversity in the solid-state architectures of bis(4-pyridyl)acetylene and its derivatives

Ibukun Oluwaseun Shotonwa (1,*) orcid , Rene Theodoor Boere (2) orcid

(1) Department of Chemistry, Faculty of Science, Lagos State University, Ojo, Lagos, 102101, Nigeria
(2) Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada
(*) Corresponding Author

Received: 14 Dec 2019 | Revised: 29 Jan 2020 | Accepted: 01 Feb 2020 | Published: 31 Mar 2020 | Issue Date: March 2020


The crystals of bis(4-pyridyl)acetylene are orthorhombic and belong to the space group Fddd. Solid-state investigation using conventional and Hirshfeld analytical techniques revealed valuable data and structural diversities that explain the wide gap between established crystal reports of co-crystals and metal organic frameworks and the pure form of the title compound. Hirshfeld surface analysis in this wise has proved to be a useful tool in unravelling complex intermolecular interactions and simplifying them at the 2D and 3D levels using sub-tools such as fingerprint plots and electrostatic potential surfaces. Both techniques have shown that the H∙∙∙Npyr interactions in the title compound are shorter than those in its polymorphic counterpart by 0.2 Å. The more stable network provided by hetero-molecular interactions in co-crystals and metal complexes of bis(4-pyridyl)acetylene shed light on their lengthy existence compared to the less favorable homo-molecular interactions in pure molecules of bis(4-pyridyl)acetylene.


Fddd; Crystals; Co-crystals; Fingerprint plots; Hirshfeld surface; Electrostatic potential

Full Text:

PDF /    /

DOI: 10.5155/eurjchem.11.1.6-14.1946

Links for Article

| | | | | | |

| | | | | | |

| |

Related Articles

Article Metrics

This Abstract was viewed 849 times | PDF Article downloaded 85 times

Funding information

Natural Sciences and Engineering Research Council of Canada; University of Lethbridge, Canada; Lagos State University, Nigeria.


[1]. Yu, B.; Tracey, J. I.; Cheng, Z.; Vacha, M.; O'Carroll, D. M. Phys. Chem. Chem. Phys. 2018, 20, 11749-11757.

[2]. Qi, M.; Hulsmann, M.; Godt, A. J. Org. Chem. 2016, 81, 2549-2571.

[3]. Pearce, T. R.; Waybrant, B.; Kokkoli, E. Chem. Commun. 2014, 50, 210-212.

[4]. Meineke, D. N. H.; Bossi, M. L.; Ta, H.; Belov, V. N.; Hell, S. W. Chem. Eur. J. 2017, 23, 2469-2475.

[5]. Liese, S.; Netz, R. R. Beilstein J. Org. Chem. 2015, 11, 804-816.

[6]. Rupert, B.; Paoli, M. D.; Rupert, B. L.; Mitchell, W. J.; Ferguson, A. J.; Muhammet, E. K.; Rance, W. L.; Rumbles, G.; Ginley, D. S.; Shaheen, S. E.; Kopidakis, N. J. Mater. Chem. 2009, 19, 5311-5324.

[7]. Cann, J.; Dayneko, S.; Sun, J.; Hendsbee, A. D.; Hill, I. G.; Welch, G. C. J. Mater. Chem. C 2017, 5, 2074-2083.

[8]. Antina, E. V.; Guseva, G. B.; Loginova, A. E.; Semeikin, A. S.; V'yugin, A. I. Russ. J. Gen. Chem. 2010, 80, 2374-2381.

[9]. Rajakumar, P.; Visalakshi, K. Arkivoc, 2011, 10, 213-220.

[10]. Huang, R.; Chiu, Y.; Chang, Y.; Chen, K.; Huang, P.; Chiang, T.; Chang, Y. J. New J. Chem. 2017, 41, 8016-8025.

[11]. Dallos, T.; Beckmann, D.; Brunklaus, G.; Baumgarten, M. J. Am. Chem. Soc. 2011, 133, 13898-13901.

[12]. Ni, Z.; Liu, J.; Hoque, M. N.; Liu, W.; Li, J.; Chen, Y.; Tong, M. Coord. Chem. Rev. 2017, 335, 28-43.

[13]. Fenenko, L.; Shao, G.; Orita, A.; Yahiro, M.; Otera, J.; Svechniko, S.; Adachi, C. Chem. Commun. 2007, 2278-2280.

[14]. Mahmoudpour, A.; Nafisi, S.; Najafi, E.; and Notash, B.; Main Gr. Met. Chem. 2019, 42, 51-59.

[15]. Faukner, T.; Slany, L.; Sloufova, I.; Vohlidal, J.; Zednik, J. Macromol. Res. 2016, 24, 441-449.

[16]. Shi, L.; Guo, Y.; Hu, W.; Liu, Y.; Mater. Chem. Front. 2017, 1, 2423-2456.

[17]. Seth, S.; Matzger, A. J. Cryst. Growth. Des. 2017, 17, 4043-4048.

[18]. Yuan, S.; Zou, L.; Qin, J.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M. Nat. Commun. 2017, 8, 1-10.

[19]. Yang, X.; Xu, Q. Cryst. Growth. Des. 2017, 17, 1450-1455.

[20]. Dankhoff, K.; Lochenie, C.; Puchtler, F.; Weber, B. Eur. J. Inorg. Chem. 2016, 2016, 2136-2143.

[21]. Bajpai, A.; Scott, H. S.; Pham, T.; Chen, K.; Space, B.; Lusi, M.; Perry, M. L.; Zaworotko, M. J. IUCrJ 2016, 3, 430-439.

[22]. Dias, S. I. G.; S. Rabac, I. C. Santos, D. Wallis, and M. Almeida, Cryst. Eng. Comm. 2010, 12, 3397-3400.

[23]. Carlucci, L.; Ciani, G.; Macchi, P.; Proserpio, D. M. Chem. Commun. 1998, 1, 1837-1838.

[24]. Bosch, E. Cryst. Growth. Des. 2010, 10, 3808-3813, .

[25]. Beckmann, J.; Janicke, S. L. Eur. J. Inorg. Chem. 2006, 2006, 3351-3358.

[26]. Bartual-murgui, C.; Ortega-Villar, N. A.; Shepherd, H. J.; Munoz, C. M.; Salmon, L.; Bousseksou, A.; Real, J. A. J. Mater. Chem. 2011, 21, 7217-7222.

[27]. Tsaggeos, K.; Masiera, N.; Niwicka, A.; Dokorou, V.; Siskos, M. G.; Skoulika, S.; Michaelides, A. Cryst. Growth. Des. 2012, 12, 2187-2194.

[28]. Wang, C.; Batsanov, A. S.; Bryce, M. R.; Martın, S.; Nichols, R. J.; Higgins, S. J.; Suarez, V. M.; Lambert, C. J. J. Am. Chem. Soc. 2009, 131, 15647-15654.

[29]. Sokolov, A. N.; Tomislav, F.; Blais, S.; Ripmeester, J. A.; Macgillivray, L. R. Cryst. Growth. Des. 2006, 6, 2427-2428.

[30]. Ryu, J. Y.; Lee, J. M.; Park, Y. J.; Van Nghia, N.; Lee, M. H.; Lee, J. Organometallics 2013, 32, 7272-7274.

[31]. Neogi, S.; Lorenz, Y.; Engeser, M.; Samanta, D.; Schmittel, M. Inorg. Chem. 2013, 52, 6975-6984.

[32]. Desiraju, G. R. J. Am. Chem. Soc. 2013, 135, 9952-9967.

[33]. Choua, S.; Jouaiti, A.; Geoffroy, M. Phys. Chem. Chem. Phys. 1999, 1, 3557-3560.

[34]. Zaman, B.; Tomura, M.; Yamashita, Y. J. Org. Chem. 2001, 66, 5987-5995.

[35]. Marin, G.; Andruh, M.; Madalan, A. M.; Blake, A. J.; Wilson, C.; Champness, N. R.; Schroder, M. Cryst. Growth. Des. 2008, 8, 964-975.

[36]. Elacqua, E.; Bucar, D. -K.; Henry, R. F.; Zhang, G. G. Z.; Macgillivray, L. R. Cryst. Growth. Des. 2013, 13, 393-403.

[37]. Tanner, M.; Ludi, A. Chimica 1980, 34, 23-24.

[38]. Sheldrick, G. M. Acta. Cryst. Sect. A 2007, 64, 112-122.

[39]. Boere, R. T.; Roemmele, T. L.; Yu, X. Inorg. Chem. 2011, 50, 5123-5136.

[40]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J. V.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.

[41]. Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer17, University of Western Australia, 2017.

[42]. BioCIS UMR-CNRS-8076, Universite de Paris-Saclay, France, Retrieved Feb 01, 2020, from

[43]. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.

[44]. Allan, J. R.; Barrow, M. J.; Beaumont, P. C.; Macindoe, L. A.; Milburn, G. H. W.; Werninck, A. R. Inorg. Chim. Acta 1988, 148, 85-90.

[45]. Sokolov, A. N.; Friscic, T.; Blais, S.; Ripmeester, J. A.; Macgillivray, L. R. Cryst. Growth Des. 2006, 6, 2427-2428.

[46]. Patil, R. S.; Mossine, A. V.; Kumari, H.; Barnes, C. L.; Atwood, J. L. Cryst. Growth Des. 2014, 14, 5212-5218.

[47]. Patil, R. S.; Kumari, H.; Barnes, C. L.; Atwood, J. L. Chem. Commun, 2015, 51, 2304-2307.

[48]. Tomura, M.; Yamashita, Y. Chem. Lett. 2001, 6, 532-533.

[49]. Bosch, E.; Kruse, S. J.; Groeneman, R. H.; Cryst. Eng. Comm. 2019, 21, 990-993.

[50]. Bosch, E. J. Chem. Crystallogr. 2014, 44, 287-292.

[51]. Hutchins, K. M.; Unruh, D. K.; Carpenter, D. D.; Groeneman, R. H. Cryst. Eng. Comm. 2018, 20, 7223-7402.

[52]. Hutchins, K. M.; Unruh, D. K.; Verdu, F. A.; Groeneman, R. H. Cryst. Growth. Des. 2018, 18, 566-570.

[53]. Bosch, E.; Bowling, N. P.; Darko, J. Cryst. Growth. Des. 2015, 15, 1634-1641.

[54]. Hutchins, K. M.; Dutta, S.; Loren, B. P.; Macgillivray, L. R. Chem. Mater. 2014, 26, 3042-3044.

[55]. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G. J. Chem. Soc. Perkin Trans. II 1987, 12, S1-S19.

[56]. Mishra, B. K.; Sathyamurthy, N. J. Phys. Chem. A 2005, 109, 6-8.

[57]. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.

[58]. Batsanov, S. S. Inorg. Mater. 2001, 37, 871-885.

[59]. Kirchner, M. T.; Boese, R.; Gehrke, A.; Blaser, D. Cryst. Eng. Comm. 2004, 6, 360-366.

[60]. Ohkita, M.; Suzuki, T.; Nakatani, K.; Tsuji, T. Chem. Lett. 2001, 30(10), 988-989.

[61]. Shivakumar, K.; Vidyasagar, A.; Naidu, A.; Gonnade, R. G. Sureshan, K. M. Cryst. Eng. Comm. 2012, 14, 519-524.

Supporting information

The Supplementary Material for this article can be found online at: Supplementary files

How to cite

Shotonwa, I.; Boere, R. Eur. J. Chem. 2020, 11(1), 6-14. doi:10.5155/eurjchem.11.1.6-14.1946
Shotonwa, I.; Boere, R. Structural diversity in the solid-state architectures of bis(4-pyridyl)acetylene and its derivatives. Eur. J. Chem. 2020, 11(1), 6-14. doi:10.5155/eurjchem.11.1.6-14.1946
Shotonwa, I., & Boere, R. (2020). Structural diversity in the solid-state architectures of bis(4-pyridyl)acetylene and its derivatives. European Journal of Chemistry, 11(1), 6-14. doi:10.5155/eurjchem.11.1.6-14.1946
Shotonwa, Ibukun, & Rene Theodoor Boere. "Structural diversity in the solid-state architectures of bis(4-pyridyl)acetylene and its derivatives." European Journal of Chemistry [Online], 11.1 (2020): 6-14. Web. 28 Nov. 2020
Shotonwa, Ibukun, AND Boere, Rene. "Structural diversity in the solid-state architectures of bis(4-pyridyl)acetylene and its derivatives" European Journal of Chemistry [Online], Volume 11 Number 1 (31 March 2020)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item

DOI Link:

| | | | | | | |

| | | | | |

Save to Zotero Save to Mendeley

European Journal of Chemistry 2020, 11(1), 6-14 | doi: | Get rights and content


  • There are currently no refbacks.

Copyright (c) 2020 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).

© Copyright 2010 - 2020  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2020 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.