

Crystal structure, thermal behavior and vibrational studies of tetraethylammonium dihydrogenarsenate bis-arsenic acid [(C2H5)4N].[H2AsO4].[H3AsO4]2
Ikram Dhouib (1,*)




(1) Laboratoire de Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
(2) CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr A. Schweitzer, Pessac, F-33608, France
(3) Laboratoire de Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
(4) Laboratoire de Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
(*) Corresponding Author
Received: 26 Feb 2014 | Revised: 13 Mar 2014 | Accepted: 13 Mar 2014 | Published: 30 Sep 2014 | Issue Date: September 2014
Abstract
An organic-inorganic hybrid compound of tetraethylammonium dihydrogenarsenate bis-arsenic acid salts of formula [(CH3CH2)4N].[H2AsO4].[H3AsO4]2(TEAs) were grown by the slow evaporation and characterized by means of single crystal X-ray diffraction, thermal analysis, FT-IR and Raman spectroscopy. This compound crystallize in the space groups Cc with unit cell parameters, a= 20.105(2) Å; b= 7.342(4) Å, c = 15.292(2) Å, γ = 115(4)°, Z = 4, R= 0.07. The structure has solved using direct methods and refined by least-squares analysis. In this case, the structure consists of infinite parallel two-dimensional planes built of mutually H2AsO4−, H3AsO4 tetrahedra connected by strong O-H···O hydrogen bonding. The thermoanalytical properties were studied using TG of TEAs method in the temperature ranges from 300 to 440 K for this hygroscopic sample. DSC measurement was carried out in the temperature range from 305 to 425 K.
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.5.3.388-393.1038
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Citations
[1]. Ikram Dhouib, Philippe Guionneau, Zakaria Elaoud
Vibrational spectroscopy, electrical characterization, nonlinear optical properties and DFT calculation of (NEt4)(H2AsO4)(H3AsO4)2
Journal of Coordination Chemistry 70(21), 3585, 2017
DOI: 10.1080/00958972.2017.1406082

[2]. Karolina Schwendtner, Uwe Kolitsch
Three new acid M + arsenates and phosphates with multiply protonated As/PO4 groups
Acta Crystallographica Section C Structural Chemistry 75(8), 1134, 2019
DOI: 10.1107/S2053229619008489

[3]. Dhouha Abid, Ikram Dhouib, Philippe Guionneau, Stanislav Pechev, Iskandar Chaabane, Nathalie Daro, Zakaria Elaoud
Proton conduction study of a new selenate-based hybrid compound
Journal of Alloys and Compounds 824, 153826, 2020
DOI: 10.1016/j.jallcom.2020.153826

[4]. Ikram Dhouib, Ali Ouasri, Philippe Guionneau, Zakaria Elaoud
A new organic-inorganic hybrid compound based on sulfate: Structural characterization, DFT study, Hirshfeld analysis, and electrical, vibrational and thermal properties
Journal of Physics and Chemistry of Solids 165, 110654, 2022
DOI: 10.1016/j.jpcs.2022.110654

References
[1]. Laine, R.; Sanchez, C.; Brinker, C. J.; Gianellis (Eds.), E. Organic/Inorganic Hybrid Materials, Materials Research Society Series, Vol. 628, Pittsburgh, PA. 2000.
[2]. Sanchez, C.; Lebeau, B. Mater. Res. Soc. Bull. 2001, 26, 377-387.
http://dx.doi.org/10.1557/mrs2001.91
[3]. Zdanowska-Fraczek, M.; Holderna-Natkaniec, K.; Fraczek, Z. J.; Jakubas, R. Solid State Ion. 2009, 180, 9-12.
http://dx.doi.org/10.1016/j.ssi.2008.10.018
[4]. Chaabane, I.; Hlel, F.; Guidara, K. J. Alloys Compd. 2008, 461, 495-500.
http://dx.doi.org/10.1016/j.jallcom.2007.07.031
[5]. Sakai, K.; Takemura, M.; Kawabe, Y. J. Lumin. 2010, 130, 2505-2507.
http://dx.doi.org/10.1016/j.jlumin.2010.08.026
[6]. Pradeesha, K.; Sharachandar, Y. G.; Singhb, M.; Vijaya, P. G. Mater. Chem. Phys. 2010, 124, 44-47.
http://dx.doi.org/10.1016/j.matchemphys.2010.07.037
[7]. Vishwakarma, A.; Ghalsasi, P.; Navamoney, A.; Lan, Y.; Powell, A. Polyhedron 2011, 30, 1565-1570.
http://dx.doi.org/10.1016/j.poly.2011.03.025
[8]. Aruta, C.; Licci, F.; Zappettini, A.; Bolzoni, F.; Rastelli, F.; Ferro, P.; Bezagni, T. Appl. Phys. A 2005, 81, 963-968.
http://dx.doi.org/10.1007/s00339-004-3102-3
[9]. Bujak, M.; Zaleski, J. Cryst. Eng. 2001, 4, 241-243.
http://dx.doi.org/10.1016/S1463-0184(01)00018-1
[10]. Karoui, K.; Rhaiem, A. B.; Guidara, K. Physica B 2012, 407, 489-493.
http://dx.doi.org/10.1016/j.physb.2011.11.021
[11]. Baouab, L.; Jouini, A. J. Solid State Chem. 1998, 141, 343-351.
http://dx.doi.org/10.1006/jssc.1998.7933
[12]. Averbuch-Pouchot, M. T.; Durif, A. Acta Cryst. C 1987, 43, 1894-1896.
http://dx.doi.org/10.1107/S0108270187089716
[13]. Averbuch-Pouchot, M. T.; Durif, A.; Guitel, J. C. Acta Cryst. C 1988, 44, 1968-1972.
http://dx.doi.org/10.1107/S0108270188000502
[14]. Averbuch-Pouchot, M. T.; Durif, A.; Guitel, J. C. Acta Cryst. C 1988, 44, 99-102.
http://dx.doi.org/10.1107/S0108270187008539
[15]. Bagieu-Beucher, M. Acta Cryst. C 1990, 46, 238-240.
http://dx.doi.org/10.1107/S0108270189006177
[16]. Averbuch-Pouchot, M. T.; Durif, A.; Guitel, J. C. Acta Cryst. C 1989, 45, 421-423.
http://dx.doi.org/10.1107/S0108270188011977
[17]. Baran, J.; Sledz, M.; Drozd, M.; Pietraszko, A.; Haznar, A.; Ratajczak, H. J. Mol. Struct. 2000, 526, 361-371.
http://dx.doi.org/10.1016/S0022-2860(00)00530-5
[18]. Amirthaganesan, G.; Kandaswamy, M. A.; Dhandapani, M. Mater. Chem. Phys. 2008, 110, 328-331.
http://dx.doi.org/10.1016/j.matchemphys.2008.02.006
[19]. Dhouib, I.; Al-Juaid, S.; Mhiri, T.; Elaoud, Z. Cryst. Struct. Theory Appl. 2013, 2, 8-15.
http://dx.doi.org/10.4236/csta.2013.21002
[20]. Dhouib, I.; Elaoud, Z.; Mhiri, T.; Daoud, A. J. Chem. Crystallogr. 2012, 42, 5, 513-518.
http://dx.doi.org/10.1007/s10870-011-9997-6
[21]. Dhouib, I.; Guionneau, P.; Pechev, S.; Mhiri, T.; Elaoud, Z. Eur. J. Chem. 2013, 4(2), 117-120.
http://dx.doi.org/10.5155/eurjchem.4.2.117-120.738
[22]. Sheldrick, G. M.; SHELX-97, Program for the Solution of Crystal Structures and Crystal Determination, Univ. of Göttingen: Germany, 1997.
[23]. Baur, W. Acta Crystallgr. B 1974, 30, 1195-1215.
http://dx.doi.org/10.1107/S0567740874004560
[24]. Brown, I. D. Acta Cryst. A 1976, 32, 24-31.
http://dx.doi.org/10.1107/S0567739476000041
[25]. Blessing, R. H. Acta Cryst. B 1986, 42, 604-613.
http://dx.doi.org/10.1107/S0108768186097641
[26]. Nailii, H.; Mhiri, T.; Jaud, J. J. Solid. State Chem. 2001, 161, 9-16.
[27]. Le Calve, N.; Romain, F.; Limage, M. H.; A. Novak, A. J. Mol. Struct. 1989, 200, 131-137.
[28]. Hubert, J. I.; Jayakumar, V. S.; Aruldhas, G. J. Solid State Chem. 1995, 120, 343-347.
http://dx.doi.org/10.1006/jssc.1995.1418
[29]. Romain, F.; Novak, A. J. Mol. Struct. 1991, 263, 69-74.
http://dx.doi.org/10.1016/0022-2860(91)80056-A
[30]. Rui-Zhou, Z.; Xiao-Hong, L. Xian-Zhou, Z. Chin. J. Struct. Chem. 2012, 31, 1395-1408.
[31]. Silverstein, R. M.; Webster, F. X. Spectrometric, Identification of Organic Compounds, Wiley, New York, 1973.
[32]. Gosniowska, M.; Ciunik, Z.; Bator, G.; Jakubas, R.; Baran, J. J. Mol. Struct. 2000, 555, 243-255.
http://dx.doi.org/10.1016/S0022-2860(00)00607-4
[33]. Karbowiak, M.; Hanuza, J.; Janczak, J.; Drozdzynski, J. J. Alloys Compd. 1995, 225, 338-343.
http://dx.doi.org/10.1016/0925-8388(94)07117-9
[34]. Karabacak, M.; Cinar, Z.; Kurt, M.; Sudha, S.; Sundaraganesan, N. Spectrochim. Acta A 2012, 85, 179-189.
http://dx.doi.org/10.1016/j.saa.2011.09.058
[35]. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990.
[36]. Heddrich, H. G.; Blom, C. E. J. Chem. Phys. 1989, 90, 4660-4663.
http://dx.doi.org/10.1063/1.456610
[37]. Heddrich, H. G.; Blom, C. E. J. Mol. Spectrosc. 1990, 140, 103-106.
http://dx.doi.org/10.1016/0022-2852(90)90009-F
[38]. Kirkwood, A. D.; Bier, K. D.; Thompson, J. K.; Haslett, T. L.; Hubber, A. S.; Moskovits, M. J. Phys. Chem. 1991, 95, 2644-2652.
http://dx.doi.org/10.1021/j100160a006
[39]. Edsall, J. T. J. Chem. Phys. 1937, 5, 225-232.
http://dx.doi.org/10.1063/1.1750013
[40]. Hajlaoui, S.; Chaabane, I.; Oueslati, A.; Guidara, K.; Bulou, A. Spectrochimi Acta A. 2014, 117, 225-233.
http://dx.doi.org/10.1016/j.saa.2013.07.088
[41]. Marchon B.; Novak, A. J. Chem. Phys. 1985, 78, 2105-2110.
http://dx.doi.org/10.1063/1.445073
[42]. Ohno, N.; Lockwood, D. J. J. Chem. Phys. 1985, 83, 4374-3379.
http://dx.doi.org/10.1063/1.449053
[43]. Choi. B. K.; Kim, J. J. Jpn. J. Appl. Phys. 1985, 24, 912-914.
[44]. Baran, J. J. Mol. Struct. 1987, 162, 211-228.
http://dx.doi.org/10.1016/0022-2860(87)87054-0
[45]. Hadzi, D.; Bratos, S. The Hydrogen Bond, Vol. 2, North-Holland, Amsterdam, 1976, p. 565.
[46]. Hofacker, G. L.; Marechal, Y.; Ratner, M. A. The Hydrogen Bond, Vol. 1, North-Holland, Amsterdam, 1976, p. 295.
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.5.3.388-393.1038


















European Journal of Chemistry 2014, 5(3), 388-393 | doi: https://doi.org/10.5155/eurjchem.5.3.388-393.1038 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2022 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2022 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.