European Journal of Chemistry 2016, 7(2), 182-186 | doi: https://doi.org/10.5155/eurjchem.7.2.182-186.1396 | Get rights and content




  OPEN ACCESS | PEER-REVIEWED | RESEARCH ARTICLE

Influence of polymer binder structure on the properties of the graphite anode for lithium-ion batteries


Monika Osinska-Broniarz (1,*) , Agnieszka Martyla (2) , Lukasz Majchrzycki (3) , Marek Nowicki (4) , Agnieszka Sierczynska (5)

(1) Institute of Non Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan, Poland
(2) Institute of Non Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan, Poland
(3) Wielkopolska Center for Advanced Technologies, Grunwaldzka 6, 60-780 Poznan, Poland
(4) Institute of Physics, Poznan University of Technology, Nieszawska 13a, PL- 60-965, Poznan, Poland
(5) Institute of Non Ferrous Metals, Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan, Poland
(*) Corresponding Author

Received: 20 Jan 2016 | Accepted: 20 Feb 2016 | Published: 30 Jun 2016 | Issue Date: June 2016

Abstract


This paper discusses the impact of the structure and properties of three different polymer binders: polyvinylidene fluoride, sodium carboxymethyl cellulose and polyvinyl alcohol, on the electrochemical properties of spherical graphite anodes for Li-ion batteries. Electrochemical tests indicate that the nature of polyvinylidene fluoride contributes in decreasing the cycle life of graphite electrodes in contrast to effective water-based binders. This study demonstrates the possibility of manufacturing graphite-based electrode for Li-ion batteries that cycle longer and use water in the processing, instead of hazardous organic solvents like N-methylpyrrolidone, thereby improving performance, reducing cost and protecting the environment.


Keywords


PVA; CMC; PVdF; Anode; Li-ion battery; Polymer binder

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.2.182-186.1396

Get Citation | Scilit | GrowKudos | ResearchGate | Publons | Microsoft Academic

WorldCat | Dimensions | SemanticScholar | PlumX Metrics | Kopernio | Zotero | Mendeley

Article Metrics


This Abstract was viewed 748 times | PDF Article downloaded 334 times


Citations

/


[1]. Mohammad Zarei-Jelyani, Mohsen Babaiee, Shaghayegh Baktashian, Rahim Eqra
Unraveling the role of binder concentration on the electrochemical behavior of mesocarbon microbead anode in lithium–ion batteries: understanding the formation of the solid electrolyte interphase
Journal of Solid State Electrochemistry  23(10), 2771, 2019
DOI: 10.1007/s10008-019-04381-8
/


[2]. Trupti C. Nirmale, Bharat B. Kale, Anjani J. Varma
A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery
International Journal of Biological Macromolecules  103, 1032, 2017
DOI: 10.1016/j.ijbiomac.2017.05.155
/


[3]. V. V. N. Phanikumar, Vallabha Rao Rikka, Bijoy Das, Raghavan Gopalan, B. V. Appa Rao, Raju Prakash
Investigation on polyvinyl alcohol and sodium alginate as aqueous binders for lithium-titanium oxide anode in lithium-ion batteries
Ionics  25(6), 2549, 2019
DOI: 10.1007/s11581-018-2751-8
/


[4]. Nazan Okur, Canan Saricam, Ikilem Gocek, Berdan Kalav, Umut Kivanc Sahin
Functionalized polyvinyl alcohol nanofiber webs containing β–cyclodextrin/Vitamin C inclusion complex
Journal of Industrial Textiles  , 152808371986693, 2019
DOI: 10.1177/1528083719866933
/


[5]. Kelsey B. Hatzell, Marm B. Dixit, Sarah A. Berlinger, Adam Z. Weber
Understanding inks for porous-electrode formation
J. Mater. Chem. A  5(39), 20527, 2017
DOI: 10.1039/C7TA07255D
/


[6]. Nancy Dietz Rago, Donald G. Graczyk, Yifen Tsai, Seema R. Naik, Jianlin Li, Zhijia Du, David L. Wood III, Leigh Anna Steele, Joshua Lamb, Scott Spangler, Christopher Grosso, Kyle Fenton, Ira Bloom
Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite cells–effect of binder
Journal of Power Sources  , 227414, 2019
DOI: 10.1016/j.jpowsour.2019.227414
/


References

[1]. Barsykov, V.; Khomenko, V. Mater. Sci. App. Chem. 2010, 21, 67-71.

[2]. Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novak, P. J. Power Sources 2006, 161, 617-622.
http://dx.doi.org/10.1016/j.jpowsour.2006.03.073

[3]. Assresahegn, B. D.; Belanger, D. Adv. Funct. Mater. 2015, 25(43), 6775-6785.
http://dx.doi.org/10.1002/adfm.201503738

[4]. Yoo, M.; Frank, C. W.; Mori, S. Chem. Materials 2003, 15, 850-861.
http://dx.doi.org/10.1021/cm0209970

[5]. Yoo, M.; Frank, C. W.; Mori, S.; Yamaguchi, S. Chem. Materials 2004, 16, 1945-1953.
http://dx.doi.org/10.1021/cm0304593

[6]. Nguyen, M. H. T.; Oh, E. S. Electrochem. Commun. 2013, 35, 45-48.
http://dx.doi.org/10.1016/j.elecom.2013.07.042

[7]. Chong, J.; Xun, S.; Zheng, H.; Song, X.; Liu, G.; Ridgway, P.; Qiang, W. J.; Battaglia, V. S. J. Power Sources 2011, 196, 7707-7714.
http://dx.doi.org/10.1016/j.jpowsour.2011.04.043

[8]. Lux, S. F.; Schappacher, F.; Balducci, A.; Passerini, S.; Winter, M. J. Electrochem. Soc. 2010, 157, A320-A325.
http://dx.doi.org/10.1149/1.3291976

[9]. Lee, J. H.; Paik, U.; Hackley, V. A.; Choic, Y. M. J. Electrochem. Soc. 2005, 152, 9, A1763-A1769.
http://dx.doi.org/10.1149/1.1979214

[10]. Nguyen, B. P. N.; Chazelle, S.; Cerbelaud, M.; Porcher, W.; Lestriez, B. J. Power Sources 2014, 262, 112-122.
http://dx.doi.org/10.1016/j.jpowsour.2014.03.119

[11]. Qiu, L.; Shao, Z.; Wang, D.; Wang, F.; Wang, W.; Wang, J. Carbohyd. Polymers 2014, 112, 532-538.
http://dx.doi.org/10.1016/j.carbpol.2014.06.034

[12]. Yim, C. H.; Courtel, F. M.; Abu-Lebdeh, Y. J. Mater. Chem. A 2013, 1, 8234-8243.
http://dx.doi.org/10.1039/c3ta10883j

[13]. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 72-75.
http://dx.doi.org/10.1126/science.1209150

[14]. Han, Z. J.; Yamagiwa, K.; Yabuuchi, N.; Son, J. Y.; Cui, Y. T.; Oji, H.; Kogure, A.; Harada, T.; Ishikawa, S.; Aokid, Y.; Komaba, S. Phys. Chem. Chem. Phys. 2015, 17, 3783-3795.
http://dx.doi.org/10.1039/C4CP04939J

[15]. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679-4683.
http://dx.doi.org/10.1002/adma.201102421

[16]. Li, J.; Le, D. B.; Ferguson, P. P.; Dahn, J. R. Electrochim. Acta 2010, 55, 2991-2995.
http://dx.doi.org/10.1016/j.electacta.2010.01.011

[17]. Zhang, Z.; Zeng, T.; Lai, Y.; Jia, M.; Li, J. J. Power Sources 2014, 247, 1-8.
http://dx.doi.org/10.1016/j.jpowsour.2013.08.051

[18]. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B. et al., ACS Applied Mat. Inter. 2010, 2, 11, 3004-3010.
http://dx.doi.org/10.1021/am100871y

[19]. Park, H. K.; Kong, B. S.; Oh, E. S. Electrochem. Commun. 2011, 13, 1051-1053.
http://dx.doi.org/10.1016/j.elecom.2011.06.034

[20]. Courtel, F. M.; Niketic, S.; Duguay, D.; Lebdeh, Y. A.; Davidson, I. J. J. Power Sources 2011, 196, 2128-2134.
http://dx.doi.org/10.1016/j.jpowsour.2010.10.025

[21]. Gong, L.; Nguyen, M. H. T.; Oh, E. S. Electrochem. Commun. 2013, 29, 45-47.
http://dx.doi.org/10.1016/j.elecom.2013.01.010

[22]. Peng, Y.; Wu, P. Polymer 2004, 45, 5295-5299.
http://dx.doi.org/10.1016/j.polymer.2004.05.034

[23]. Komaba, S.; Ozeki, T.; Yabuuchi, N.; Shimomura, K. Electrochemistry 2011, 79, 6-7.
http://dx.doi.org/10.5796/electrochemistry.79.6

[24]. Yabuuchi, N.; Shimomura, K.; Shimbe, Y.; Ozeki, T.; Son, J. Y.; Oji, H.; Katayama, Y.; Miura, T.; Komaba, S. Adv. Energy Mater. 2011, 1, 759-765.
http://dx.doi.org/10.1002/aenm.201100236

[25]. Pejovnik, S.; Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. J. Power Sources 2008, 184, 593-597.
http://dx.doi.org/10.1016/j.jpowsour.2008.02.046

[26]. Zhang, S. S.; Jow, T. R. J. Power Sources 2002, 109, 422-426.
http://dx.doi.org/10.1016/S0378-7753(02)00107-6

[27]. Yabuuchi, N.; Kinoshita, Y.; Misaki, K.; Matsuyama, T.; Komaba S. J. Electrochem. Soc. 2015, 162, A538-A544.
http://dx.doi.org/10.1149/2.0151504jes


How to cite


Osinska-Broniarz, M.; Martyla, A.; Majchrzycki, L.; Nowicki, M.; Sierczynska, A. Eur. J. Chem. 2016, 7(2), 182-186. doi:10.5155/eurjchem.7.2.182-186.1396
Osinska-Broniarz, M.; Martyla, A.; Majchrzycki, L.; Nowicki, M.; Sierczynska, A. Influence of polymer binder structure on the properties of the graphite anode for lithium-ion batteries. Eur. J. Chem. 2016, 7(2), 182-186. doi:10.5155/eurjchem.7.2.182-186.1396
Osinska-Broniarz, M., Martyla, A., Majchrzycki, L., Nowicki, M., & Sierczynska, A. (2016). Influence of polymer binder structure on the properties of the graphite anode for lithium-ion batteries. European Journal of Chemistry, 7(2), 182-186. doi:10.5155/eurjchem.7.2.182-186.1396
Osinska-Broniarz, Monika, Agnieszka Martyla, Lukasz Majchrzycki, Marek Nowicki, & Agnieszka Sierczynska. "Influence of polymer binder structure on the properties of the graphite anode for lithium-ion batteries." European Journal of Chemistry [Online], 7.2 (2016): 182-186. Web. 16 Dec. 2019
Osinska-Broniarz, Monika, Martyla, Agnieszka, Majchrzycki, Lukasz, Nowicki, Marek, AND Sierczynska, Agnieszka. "Influence of polymer binder structure on the properties of the graphite anode for lithium-ion batteries" European Journal of Chemistry [Online], Volume 7 Number 2 (30 June 2016)

DOI Link: https://doi.org/10.5155/eurjchem.7.2.182-186.1396

| | | | |

| | | | | |

Save to Zotero Save to Mendeley

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.