European Journal of Chemistry 2016, 7(3), 271-279 | doi: https://doi.org/10.5155/eurjchem.7.3.271-279.1427 | Get rights and content

Issue cover





  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules


Javeed Ahmad War (1) , Santosh Kumar Srivastava (2,*) , Savitri Devi Srivastava (3)

(1) Synthetic Organic Chemistry-Molecular Modelling Laboratory, Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, 470003, India
(2) Synthetic Organic Chemistry-Molecular Modelling Laboratory, Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, 470003, India
(3) Synthetic Organic Chemistry-Molecular Modelling Laboratory, Department of Chemistry, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, 470003, India
(*) Corresponding Author

Received: 16 Mar 2016 | Revised: 10 Apr 2016 | Accepted: 17 Apr 2016 | Published: 30 Sep 2016 | Issue Date: September 2016

Abstract


A novel series of morpoline linked thiazolidione hybrid molecules targeting bacterial enoyl acyl carrier protein (Enoyl-ACP) reductase were designed and synthesized through a three step reaction protocol, which involves simple reaction setup and moderate reaction conditions. The synthesized molecules were characterized with FT-IR, 1H NMR, 13C NMR and HRMS techniques. In vitro susceptibility tests against some Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) gave highly promising results. Most of the molecules were found to be active against the tested bacterial strains. The most potent molecule (S2B7) gave MIC value of 2.0 µg/mL against Escherichia coli that was better than the reference drug streptomycin. Structure activity relationship showed nitro and chloro groups are crucial for bioactivity if present at meta position of arylidene ring in designed molecules. Molecular docking simulations against multiple targets showed that the designed molecules have strong binding affinity towards Enoyl-ACP reductase. Binding affinity of -8.6 kcal/mol was predicted for S2B7. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction.


Keywords


Thiourea; Morpholine; Target fishing; Thiazolidinone; Molecular docking; Antimicrobial activity

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.7.3.271-279.1427

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1553 times | icon graph PDF Article downloaded 615 times

Funding information


Department of Science and Technology, New-Delhi, India under INSPIRE program (INSPIRE ID: IF120399)

Citations

/


[1]. Javeed Ahmad War, Santosh Kumar Srivastava
Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders
European Journal of Chemistry  11(2), 120, 2020
DOI: 10.5155/eurjchem.11.2.120-132.1974
/


References


[1]. Scheffler, R.; Colmer, S.; Tynan, H.; Demain, A.; Gullo, V. Appl. Microbiol. Biotechnol. 2013, 97, 969-978.
http://dx.doi.org/10.1007/s00253-012-4609-8

[2]. Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.; Scheld, M.; Spellberg, B.; Bartlett, J. Clin. Infect. Dis. 2009, 48, 1-12.
http://dx.doi.org/10.1086/595011

[3]. Brandt, C.; Makarewicz, O.; Fischer, T.; Stein, C.; Pfeifer, Y.; Werner, G.; Pletz, M. W. Int. J. Antimicrob. Agents 2014, 44, 424-430.
http://dx.doi.org/10.1016/j.ijantimicag.2014.08.001

[4]. Cohen, M. L. Science 1992, 257, 1050-1055.
http://dx.doi.org/10.1126/science.257.5073.1050

[5]. Gagliotti, C.; Balode, A.; Baquero, F.; Degener, J.; Grundmann, H.; Gür, D.; Jarlier, V.; Kahlmeter, G.; Monen, J.; Monnet, D. Euro. Surveill. 2011, 16(11), 1-5.

[6]. Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Interdiscip Perspect Infect Dis. 2014, 2014, ID: 541340, 1-7.

[7]. Woolhouse, M. E.; Ward, M. J. Science 2013, 341, 1460-1461.
http://dx.doi.org/10.1126/science.1243444

[8]. Lowy, F. D. J. Clin. Invest. 2003, 111, 1265-1273.
http://dx.doi.org/10.1172/JCI18535

[9]. Rice, L. B. Am. J. Infect. Control 2006, 34, S11-S19.
http://dx.doi.org/10.1016/j.ajic.2006.05.220

[10]. Organization, W. H. World Health Organization, 2014.

[11]. Norrby, S. R.; Nord, C. E.; Finch, R. Lancet Infect. Dis. 2005, 5, 115-119.
http://dx.doi.org/10.1016/S1473-3099(05)70086-4

[12]. Micheli, F.; Cremonesi, S.; Semeraro, T.; Tarsi, L.; Tomelleri, S.; Cavanni, P.; Oliosi, B.; Perdonà, E.; Sava, A.; Zonzini, L. Bioorg. Med. Chem. Lett. 2016, 26, 1329-1332.
http://dx.doi.org/10.1016/j.bmcl.2015.12.081

[13]. Panneerselvam, P.; Nair, R. R.; Vijayalakshmi, G.; Subramanian, E. H.; Sridhar, S. K. Eur. J. Med. Chem. 2005, 40, 225-229.
http://dx.doi.org/10.1016/j.ejmech.2004.09.003

[14]. Shcherbatiuk, A. V.; Shyshlyk, O. S.; Yarmoliuk, D. V.; Shishkin, O. V.; Shishkina, S. V.; Starova, V. S.; Zaporozhets, O. A.; Zozulya, S.; Moriev, R.; Kravchuk, O. Tetrahedron 2013, 69, 3796-3804.
http://dx.doi.org/10.1016/j.tet.2013.03.067

[15]. Bissantz, C.; Kuhn, B.; Stahl, M. J. Med. Chem. 2010, 53, 5061-5084.
http://dx.doi.org/10.1021/jm100112j

[16]. Morgenthaler, M.; Schweizer, E.; Hoffmann‐Röder, A.; Benini, F.; Martin, R. E.; Jaeschke, G.; Wagner, B.; Fischer, H.; Bendels, S.; Zimmerli, D. Chem. Med. Chem. 2007, 2, 1100-1115.
http://dx.doi.org/10.1002/cmdc.200700059

[17]. Ndungu, J. M.; Krumm, S. A.; Yan, D.; Arrendale, R. F.; Reddy, G. P.; Evers, T.; Howard, R.; Natchus, M. G.; Saindane, M. T.; Liotta, D. C. J. Med. Chem. 2012, 55, 4220-4230.
http://dx.doi.org/10.1021/jm201699w

[18]. Andrs, M.; Korabecny, J.; Jun, D.; Hodny, Z.; Bartek, J.; Kuca, K. J. Med. Chem. 2014, 58, 41-71.
http://dx.doi.org/10.1021/jm501026z

[19]. Nazreen, S.; Alam, M. S.; Hamid, H.; Yar, M. S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.; Bano, S.; Alam, M. M. Eur. J. Med. Chem. 2014, 87, 175-185.
http://dx.doi.org/10.1016/j.ejmech.2014.09.010

[20]. Chavan, S.; Zangade, S.; Vibhute, A.; Vibhute, Y. Eur. J. Chem. 2013, 4, 98-101.
http://dx.doi.org/10.5155/eurjchem.4.2.98-101.714

[21]. Devi, P. B.; Samala, G.; Sridevi, J. P.; Saxena, S.; Alvala, M.; Salina, E. G.; Sriram, D.; Yogeeswari, P. Chem. Med. Chem. 2014, 9, 2538-2547.
http://dx.doi.org/10.1002/cmdc.201402171

[22]. Hidalgo‐Figueroa, S.; Ramírez‐Espinosa, J. J.; Estrada‐Soto, S.; Almanza‐Pérez, J. C.; Román‐Ramos, R.; Alarcón‐Aguilar, F. J.; Hernández‐Rosado, J. V.; Moreno‐Díaz, H.; Díaz‐Couti-o, D.; Navarrete‐Vázquez, G. Chem. Biol. Drug Des. 2013, 81, 474-483.
http://dx.doi.org/10.1111/cbdd.12102

[23]. Barros, F. W.; Silva, T. G.; da Rocha Pitta, M. G.; Bezerra, D. P.; Costa-Lotufo, L. V.; de Moraes, M. O.; Pessoa, C.; de Moura, M. A. F.; de Abreu, F. C.; de Lima, M. d. C. A. Bioorgan. Med. Chem. 2012, 20, 3533-3539.
http://dx.doi.org/10.1016/j.bmc.2012.04.007

[24]. Jain, A. K.; Vaidya, A.; Ravichandran, V.; Kashaw, S. K.; Agrawal, R. K. Bioorgan. Med. Chem. 2012, 20, 3378-3395.
http://dx.doi.org/10.1016/j.bmc.2012.03.069

[25]. Jain, V. S.; Vora, D. K.; Ramaa, C. Bioorgan. Med. Chem. 2013, 21, 1599-1620.
http://dx.doi.org/10.1016/j.bmc.2013.01.029

[26]. Keri, R. S.; Patil, M. R.; Patil, S. A.; Budagumpi, S. Eur. J. Med. Chem. 2015, 89, 207-251.
http://dx.doi.org/10.1016/j.ejmech.2014.10.059

[27]. Shehab, W. S.; Mouneir, S. M. Eur. J. Chem. 2015, 6, 157-162.
http://dx.doi.org/10.5155/eurjchem.6.2.157-162.1219

[28]. Mushtaque, M.; Avecilla, F.; Azam, A. Eur. J. Med. Chem. 2012, 55, 439.
http://dx.doi.org/10.1016/j.ejmech.2012.06.052

[29]. Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347-361.
http://dx.doi.org/10.1016/j.cbpa.2010.02.018

[30]. Bansal, Y.; Silakari, O. Eur. J. Med. Chem. 2014, 76, 31-42.
http://dx.doi.org/10.1016/j.ejmech.2014.01.060

[31]. Dubey, A.; Srivastava, S.; Srivastava, S. Bioorg. Med. Chem. Lett. 2011, 21, 569-573.
http://dx.doi.org/10.1016/j.bmcl.2010.10.057

[32]. Upadhyay, A.; Srivastava, S.; Srivastava, S. Eur. J. Med. Chem. 2010, 45, 3541-3548.
http://dx.doi.org/10.1016/j.ejmech.2010.04.029

[33]. Bürli, R. W.; Ge, Y.; White, S.; Baird, E. E.; Touami, S. M.; Taylor, M.; Kaizerman, J. A.; Moser, H. E. Bioorg. Med. Chem. Lett. 2002, 12, 2591-2594.
http://dx.doi.org/10.1016/S0960-894X(02)00515-2

[34]. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. Nat. Rev. Microbiol. 2010, 8, 423-435.
http://dx.doi.org/10.1038/nrmicro2333

[35]. Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA 2004, 101, 16789-16794.
http://dx.doi.org/10.1073/pnas.0407607101

[36]. Hernandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo, J.; Filgueira, W.; Leite, A. C. L. Curr. Drug Targets 2010, 11, 303-314.
http://dx.doi.org/10.2174/138945010790711996

[37]. Drew, W. L.; Barry, A.; O'Toole, R.; Sherris, J. C. Appl. Microbiol. 1972, 24, 240-247.

[38]. Wiegand, I.; Hilpert, K.; Hancock, R. E. Nat. Protoc. 2008, 3, 163-175.
http://dx.doi.org/10.1038/nprot.2007.521

[39]. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455-461.

[40]. Wallace, A. C.; Laskowski, R. A.; Thornton, J. M. Protein Eng. 1995, 8, 127-134.
http://dx.doi.org/10.1093/protein/8.2.127

[41]. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliver Rev. 2012, 64, 4-17.
http://dx.doi.org/10.1016/j.addr.2012.09.019

[42]. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714-3717.
http://dx.doi.org/10.1021/jm000942e

[43]. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615-2623.
http://dx.doi.org/10.1021/jm020017n

[44]. Sander, T.; Freyss, J.; von Korff, M.; Reich, J. R.; Rufener, C. J. Chem. Inf. Model. 2009, 49, 232-246.
http://dx.doi.org/10.1021/ci800305f

[45]. Domagala, J. M. J. Antimicrob. Chemother. 1994, 33, 685-706.
http://dx.doi.org/10.1093/jac/33.4.685

[46]. Drew, H. R.; Wing, R. M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. P Natl. Acad. Sci. USA 1981, 78, 2179-2183.
http://dx.doi.org/10.1073/pnas.78.4.2179

[47]. Levy, C.; Minnis, D.; Derrick, J. P. Biochem. J. 2008, 412, 379-388.
http://dx.doi.org/10.1042/BJ20071598

[48]. Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Expert Opin. Drug Dis. 2012, 7, 375-383.
http://dx.doi.org/10.1517/17460441.2012.678829

[49]. Nakama, T.; Nureki, O. J. Biol. Chem. 2001, 276, 47387-47393.
http://dx.doi.org/10.1074/jbc.M109089200

[50]. Wu, D.; Hu, T.; Zhang, L.; Chen, J.; Du, J.; Ding, J.; Jiang, H.; Shen, X. Protein Sci. 2008, 17, 1066-1076.
http://dx.doi.org/10.1110/ps.083495908

[51]. Han, S.; Caspers, N.; Zaniewski, R. P.; Lacey, B. M.; Tomaras, A. P.; Feng, X.; Geoghegan, K. F. J. Am. Chem. Soc. 2011, 133, 20536-20545.
http://dx.doi.org/10.1021/ja208835z

[52]. Lu, J.; Patel, S.; Sharma, N.; Soisson, S. M.; Kishii, R.; Takei, M.; Fukuda, Y.; Lumb, K. J.; Singh, S. B. ACS Chem. Biol. 2014, 9, 2023-2031.
http://dx.doi.org/10.1021/cb5001197

[53]. Sherer, B. A.; Hull, K.; Green, O.; Basarab, G.; Hauck, S.; Hill, P.; Loch, J. T.; Mullen, G.; Bist, S.; Bryant, J.; Boriack-Sjodin, A.; Read, J.; DeGrace, N.; Uria-Nickelsen, M.; Illingworth, R. N.; Eakin, A. E. Bioorg. Med. Chem. Lett. 2011, 21, 7416-7420.
http://dx.doi.org/10.1016/j.bmcl.2011.10.010

[54]. Ward, W. H.; Holdgate, G. A.; Rowsell, S.; McLean, E. G.; Pauptit, R. A.; Clayton, E.; Nichols, W. W.; Colls, J. G.; Minshull, C. A.; Jude, D. A.; Mistry, A.; Timms, D.; Camble, R.; Hales, N. J.; Britton, C. J.; Taylor, I. W. Biochemistry-US 1999, 38, 12514-12525.
http://dx.doi.org/10.1021/bi9907779

[55]. McMurry, L. M.; Oethinger, M.; Levy, S. B. Nature 1998, 394, 531-532.
http://dx.doi.org/10.1038/28970


How to cite


War, J.; Srivastava, S.; Srivastava, S. Eur. J. Chem. 2016, 7(3), 271-279. doi:10.5155/eurjchem.7.3.271-279.1427
War, J.; Srivastava, S.; Srivastava, S. Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules. Eur. J. Chem. 2016, 7(3), 271-279. doi:10.5155/eurjchem.7.3.271-279.1427
War, J., Srivastava, S., & Srivastava, S. (2016). Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules. European Journal of Chemistry, 7(3), 271-279. doi:10.5155/eurjchem.7.3.271-279.1427
War, Javeed, Santosh Kumar Srivastava, & Savitri Devi Srivastava. "Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules." European Journal of Chemistry [Online], 7.3 (2016): 271-279. Web. 22 Mar. 2023
War, Javeed, Srivastava, Santosh, AND Srivastava, Savitri. "Design, synthesis and molecular docking studies of some morpholine linked thiazolidinone hybrid molecules" European Journal of Chemistry [Online], Volume 7 Number 3 (30 September 2016)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.7.3.271-279.1427


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2016, 7(3), 271-279 | doi: https://doi.org/10.5155/eurjchem.7.3.271-279.1427 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c)





© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.