European Journal of Chemistry 2016, 7(4), 454-462. doi:10.5155/eurjchem.7.4.454-462.1505

Synthesis, characterization, anticancer activity, optical spectroscopic and docking studies of novel thiophene-2-carboxaldehyde derivatives


Mohamed Ahadu Shareef (1,*) , Mohamed Musthafa (2) , Devadasan Velmurugan (3) , Subramani Karthikeyan (4) , Singaravelu Ganesan (5) , Syed Ali Padusha (6) , Saiyad Musthafa (7) , Jamal Mohamed (8)

(1) Post Graduate and Research Department of Chemistry, The New College, Chennai-600014, Tamil Nadu, India
(2) Post Graduate and Research Department of Chemistry, The New College, Chennai-600014, Tamil Nadu, India
(3) Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai-600025, Tamil Nadu, India
(4) Department of Medical Physics, Anna University, Chennai-600025, Tamil Nadu, India
(5) Department of Medical Physics, Anna University, Chennai-600025, Tamil Nadu, India
(6) Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli-620020, Tamil Nadu, India
(7) Post Graduate and Research Department of Zoology, The New College, Chennai-600014, Tamil Nadu, India
(8) Post Graduate and Research Department of Zoology, The New College, Chennai-600014, Tamil Nadu, India
(*) Corresponding Author

Received: 31 Oct 2016, Accepted: 19 Nov 2016, Published: 31 Dec 2016

Abstract


2-((4-Methylpiperazin-1-yl)(thiophen-2-yl)methyl)hydrazinecarboxamide (L1) and (2-(piperazin-1-yl(thiophen-2-yl)methyl)hydrazinecarboxamide (L2) from the family of thiophene-2-carboxaldehyde derivatives have been synthesized. These new compounds have good antibacterial as well as antifungal activity and also less toxic in nature. Exemplary binding characteristics of these novel compounds and pharmacokinetic mechanism were confirmed by optical spectroscopic, anticancer and docking studies. The binding of thiophene-2-carboxaldehyde derivatives to carrier protein, Human Serum Albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance (r) between donor (HSA) and acceptor (thiophene-2-carboxaldehyde derivatives) according to Forster’s theory of non-radiative energy transfer (FRET). The micro environment of HSA has also been studied by using synchronous fluorescence spectroscopy technique and the molecular docking technique has been used to explore the hydrogen bonding, hydrophobic interaction between the human serum albumin with L1 and L2 compound.


Keywords


Molecular docking; Anticancer activity; Drug binding pocket; Antimicrobial activity; Hydrophobic interaction; Fluorescence resonance energy transfer

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.4.454-462.1505

Article Metrics


This Abstract was viewed 493 times | PDF Article downloaded 153 times

Citations

/


[1]. Subramani Karthikeyan, Ganesan Bharanidharan, Sriram Ragavan, Saravanan Kandasamy, Shanmugavel Chinnathambi, Kanniyappan Udayakumar, Rajendiran Mangaiyarkarasi, Anandh Sundaramoorthy, Prakasarao Aruna, Singaravelu Ganesan
Comparative Binding Analysis of N-Acetylneuraminic Acid in Bovine Serum Albumin and Human α-1 Acid Glycoprotein
Journal of Chemical Information and Modeling  59(1), 326, 2019
DOI: 10.1021/acs.jcim.8b00558
/


References

[1]. Bray, F.; Ren, J. S.; Masuyer, E.; Ferlay, J. Cancer. 2013, 132(5), 1133-1145.

[2]. Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11, Lyon, France: International Agency for Research on Cancer, Available from http://globocan.iarc.fr

[3]. Blume-Jensen, P.; Hunter, T. Nature2001, 411(6835), 355-365.
https://doi.org/10.1038/35077225

[4]. Hunter, T. Cell. 2000, 100(1), 113-127.
https://doi.org/10.1016/S0092-8674(00)81688-8

[5]. Stevens, L. A.; Levey, A. S. J. Am. Soc. Nephrol. 2009, 20(11), 2305-2313.
https://doi.org/10.1681/ASN.2009020171

[6]. Coresh, J.; Astor B. C.; Greene, T.; Eknoyan, G.; Levey, A. S. Am. J. Kidney Dis. 2003, 41(1), 1-12.
https://doi.org/10.1053/ajkd.2003.50007

[7]. Cockcroft, D. W.; Gault M. H. Nephron. 1976, 16(1), 31-41.
https://doi.org/10.1159/000180580

[8]. Levey, A. S.; Coresh, J.; Greene, T. Ann. Intern. Med. 2006, 145(4), 247-254.
https://doi.org/10.7326/0003-4819-145-4-200608150-00004

[9]. Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. Science 2002, 298(5600), 1912-1934.
https://doi.org/10.1126/science.1075762

[10]. Jorissen R. N. Exp. Cell Res. 2003, 284(1), 31-53.
https://doi.org/10.1016/S0014-4827(02)00098-8

[11]. Ciardiello, F. Curr. Opin. Oncol. 2004, 16(2), 130-135.
https://doi.org/10.1097/00001622-200403000-00008

[12]. Citri, A.; Yarden, Y. Nat. Rev. Mol. Cell Biol. 2006, 7, 505-516.
https://doi.org/10.1038/nrm1962

[13]. Downward, J.; Parker, P.; Waterfield, M. D. Nature 1984, 311, 483-485.
https://doi.org/10.1038/311483a0

[14]. Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. Mol. Syst. Biol. 2005, 1, E11-E17.
https://doi.org/10.1038/msb4100014

[15]. Zhang, H.; Berezov, A.; Wang, Q.; Zhang, G.; Drebin, J.; Murali, R. J. Clin. Invest. 2007, 117, 2051-2058.
https://doi.org/10.1172/JCI32278

[16]. Olson, R. E.; Christ, D. D. Annu. Rep. Med. Chem. 1996, 31, 327-337.
https://doi.org/10.1016/S0065-7743(08)60472-8

[17]. Belinelo, V. J.; Reis, G. T.; Stefani, G. M.; Ferreira-Alves, D. L.; Pilo-Veloso, D. J. Brazilian Chem. Soc. 2002, 13(6), 830-837.
https://doi.org/10.1590/S0103-50532002000600016

[18]. Rizwan-Sulthana, A.; Padusha, S. A. M.; Jameel, A. A. Indian J. Sci. Commun. 2012, 5(1), 55-58.

[19]. Valarmathi, R.; Akilandeswari, S.; Indulatha, V. N.; Umadevi, G. Der Pharm. Sinica 2011, 2(5), 64-68.

[20]. Raman, N.; Thangaraja, C.; Raja, S. J. Indian J. Chem. A 2005, 44, 693-699.

[21]. Abdul-Jameel, A.; Palanisamy, M.; Syed Ali Padusha, M. Der Chemica Sinica 2012, 3(4), 860-863.

[22]. Abdul-Jameel, A.; Padusha, S. A. M. Asian J. Chem. 2011, 23(3), 1260-1262.

[23]. Gao, H.; Lei, L.; Liu, J.; Kong, Q.; Chen, X.; Hu Z. J. Photochem. Photobiol. A: Chem. 2004, 167, 213-221.
https://doi.org/10.1016/j.jphotochem.2004.05.017

[24]. Zhu, K.; Day, T.; Warshaviak, D.; Murrett, C.; Friesner, R.; Pearlman, D. Proteins: Struct., Funct., Bioinf. 2014, 82, 1646-1655.

[25]. Schrödinger Release 2014-1, Schrödinger Suite 2014-1 Protein Preparation Wizard; Epik version 2.7, Schrödinger, LLC, New York, NY, 2013; Impact version 6.2, Schrödinger, LLC, New York, NY, 2014; Prime version 3.5, Schrödinger, LLC, New York, NY, 2014.

[26]. Karthikeyan, S.; Chinnathambi, S.; Kannan, A.; Rajakumar, P.; Velmurugan, D.; Bharanidharan, G.; Aruna, P.; Ganesan, S. J. Biochem. Mol. Toxicol. 2015, 29, 373-381.
https://doi.org/10.1002/jbt.21704

[27]. Karthikeyan, S.; Chinnathambi, S.; Velmurugan, D.; Bharanidharan, G.; Ganesan, S. Nano Biomed. Eng. 2015, 7, 1-7.
https://doi.org/10.5101/nbe.v7i1.p1-7

[28]. Karthikeyan, S.; Bharanidharan, G.; Kesherwani, M.; Karthik, A. M.; Srinivasan, N.; Velmurugan, D.; Aruna, P.; Ganesan, S. J. Biomol. Str. Dyn. 2015, 34(6), 1264-1281.
https://doi.org/10.1080/07391102.2015.1075905

[29]. Li, Z.; Jiao, G.; Sun, G.; Song, L.; Sheng, F. J. Biochem. Mol. Toxicol. 2012, 26(9), 331-336.
https://doi.org/10.1002/jbt.21424

[30]. Zhang, Y. Z.; Zhou, B.; Liu, Y. X.; Zhou, C. X.; Ding, X. L.; Liu, Y. J. Fluoresc. 2008, 18(1), 109-118.
https://doi.org/10.1007/s10895-007-0247-4

[31]. Huang, C. Z.; Lu, W.; Li, Y. F.; Huang, Y. M. Anal. Chim. Acta. 2006, 556(2), 469-475.
https://doi.org/10.1016/j.aca.2005.09.048

[32]. Hu, Y. J.; Liu, Y.; Wang, J. B.; Xiao, X. H.; Qu, S. S. J. Pharm. Biomed. Anal. 2004, 36(4), 915-919.
https://doi.org/10.1016/j.jpba.2004.08.021

[33]. Chinnathambi, S.; Velmurugan, D.; Hanagata, N.; Aruna, P.; Ganesan, S. J. Lumin. 2014, 151, 1-10.
https://doi.org/10.1016/j.jlumin.2014.01.063


How to cite


Shareef, M.; Musthafa, M.; Velmurugan, D.; Karthikeyan, S.; Ganesan, S.; Padusha, S.; Musthafa, S.; Mohamed, J. Eur. J. Chem. 2016, 7(4), 454-462. doi:10.5155/eurjchem.7.4.454-462.1505
Shareef, M.; Musthafa, M.; Velmurugan, D.; Karthikeyan, S.; Ganesan, S.; Padusha, S.; Musthafa, S.; Mohamed, J. Synthesis, characterization, anticancer activity, optical spectroscopic and docking studies of novel thiophene-2-carboxaldehyde derivatives. Eur. J. Chem. 2016, 7(4), 454-462. doi:10.5155/eurjchem.7.4.454-462.1505
Shareef, M., Musthafa, M., Velmurugan, D., Karthikeyan, S., Ganesan, S., Padusha, S., Musthafa, S., & Mohamed, J. (2016). Synthesis, characterization, anticancer activity, optical spectroscopic and docking studies of novel thiophene-2-carboxaldehyde derivatives. European Journal of Chemistry, 7(4), 454-462. doi:10.5155/eurjchem.7.4.454-462.1505
Shareef, Mohamed, Mohamed Musthafa, Devadasan Velmurugan, Subramani Karthikeyan, Singaravelu Ganesan, Syed Ali Padusha, Saiyad Musthafa, & Jamal Mohamed. "Synthesis, characterization, anticancer activity, optical spectroscopic and docking studies of novel thiophene-2-carboxaldehyde derivatives." European Journal of Chemistry [Online], 7.4 (2016): 454-462. Web. 21 Oct. 2019
Shareef, Mohamed, Musthafa, Mohamed, Velmurugan, Devadasan, Karthikeyan, Subramani, Ganesan, Singaravelu, Padusha, Syed, Musthafa, Saiyad, AND Mohamed, Jamal. "Synthesis, characterization, anticancer activity, optical spectroscopic and docking studies of novel thiophene-2-carboxaldehyde derivatives" European Journal of Chemistry [Online], Volume 7 Number 4 (31 December 2016)

DOI Link: https://doi.org/10.5155/eurjchem.7.4.454-462.1505

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.