European Journal of Chemistry

Ab initio calculation of hydration and proton transfer on sulfonated nata de coco

Main Article Content

Sitti Rahmawati
Cynthia Linaya Radiman
Muhamad Abdulkadir Martoprawiro


The repeating unit of sulfonated “nata de coco” is D-glucose sulfonate. This research aims to determine the most stable structures of sulfonated nata de coco polymer membrane, the energy and hydrogen bonds, in order to understand the characteristics, local hydration, and proton transfer on the membrane on the ab initio electronic structure calculation. The minimum energy structure for its monomer (two, three, four and five) are calculated by B3LYP/6-311G (d) method. The calculations show that there is no significant energy change on the structure interaction of two, three, four and five monomer of sulfonated nata de coco with one water molecule, which is about -18.82 kcal/mole. Those calculations that two monomers form of sulfonated nata de coco might be used to further calculation and research, because it can be considered as the representative for their polymer. The optimization and B3LYP/6-311G (d) calculation shows the amount of water molecule used for proton transfer is closely related to the formation of hydrogen bonding with sulfonic group. By the addition of one or two water molecule, the dissociated proton is stabilized by formation of hydronium ion. For further addition of water molecule (three to ten water molecules), the proton dissociation is also stabilized by the formation of Zundel ion and Eigen ion. The calculation of interaction energy with n water molecule (n = 1-10) shows that both energy change (∆E), and enthalpy change (∆H) are more negative. This implies that the interaction with water molecule is stronger. The bonding energy is about 14.0-16.5 kcal/mole per water molecule. On the addition of four and eight water molecules, proton dissociation forms two Zundel ion and two Eigen ions and causes lower bonding energy about 2 kcal/mole. Those optimization and energy calculations conclude that the formation of hydrogen bonding among water molecule and sulfonic group affects proton transfer on sulfonated nata de coco membrane.

icon graph This Abstract was viewed 1818 times | icon graph Article PDF downloaded 675 times

How to Cite
Rahmawati, S.; Radiman, C. L.; Martoprawiro, M. A. Ab Initio Calculation of Hydration and Proton Transfer on Sulfonated Nata De Coco. Eur. J. Chem. 2016, 7, 442-447.

Article Details

Crossref - Scopus - Google - European PMC

[1]. Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K. T.; Lee, J. H. Prog. Polym. Sci. 2011, 36, 813-843.

[2]. Hooger, G. Fuel Cell Technology Handbook, 2nd edition, CRC Press, 2013.

[3]. Won, J.; Choi, S. W.; Kang, S.; Ha, H. Y.; Oh, I. H.; Kim, H. S.; Kim, K. T.; Jo, W. H. J. Memb. Sci. 2003, 214, 245-257.

[4]. Kuang, K.; Easler, K. Fuel Cell Electronics Pakaging, Springer, 2007.

[5]. Zaidi, S. J.; Matsuura, T. Polymer Membranes for Fuel Cells, Springer, 2009.

[6]. Youssef, M. E.; Nadi, K. E. A.; Khalil, M. H. Int. J. Electrochem. Sci. 2010, 5, 267-277.

[7]. Mehta, V.; Cooper, J. S. J. Power Sources 2003, 114, 32-53.

[8]. Smitha, B.; Sridhar, S.; Khan, A. A. J. Memb. Sci. 2005, 259, 10-26.

[9]. Mecheri, B.; D'Epifanio, A.; Traversa, E.; Licoccia, S. J. Power Sources 2008, 178(2), 554-560

[10]. Song, Y. A.; Batista, C.; Sarpeshkar, R.; Han, J. J. Power Sources 2008, 183, 674-677.

[11]. Chen, S. L.; Krishnan, L.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. J. Memb. Sci. 2004, 242, 327-333.

[12]. Shin, J. P.; Chang, B. J.; Kim, J. H.; Lee, S. B.; Suh, D. H. J. Memb. Sci. 2005, 251, 247-254.

[13]. Wilkinson, D. P.; Zhang, J.; Hui, R.; Fergus, J.; Li, X. Proton Exchange Membrane Fuel Cell, Materials Properties and Performance, CRC Press, 2010.

[14]. Haile, S. M. J. Acta Materialia 2003, 51, 5981-6000.

[15]. Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. J. Power Sources 2007, 169, 221-238.

[16]. Liu, Q.; Song, L.; Zhang, Z.; Liu, X. Int. J. Energ. Enviro. 2010, 1, 643-656.

[17]. Radiman, C. L.; Rifathin, A. J. Appl. Polym. Sci. 2013, 130, 399-405.

[18]. Paddison, S. J.; Elliott, J. A. J. Phys. Chem. A 2005, 109, 7583-7593.

[19]. Paddison, S. J.; Elliott, J. A. Phys. Chem. Chem. Phys. 2006, 8, 2193-2203.

[20]. Wang, C.; Paddison, S. J. J. Phys. Chem. 2013, 117, 650-660.

[21]. Khokhlov, A. R.; Khalatur, P. G. Chem. Phys. Lett. 2008, 461, 58-63.

[22]. Wu, D. S.; Paddison, S. J.; Elliott, J. A. Macromolecules 2009, 42(9), 3358-3367.

[23]. Urata, S.; Irisawa, J.; Takada, A.; Shinoda, W.; Tsuzuki, S.; Mikami, M. J. Phys. Chem. B 2005, 109(36), 17274-17280.

[24]. Venkatnathan, A.; Devanathan, R.; Dupuis, M. J. Phys. Chem. B 2007, 111 (25), 7234-7244.

[25]. Devanathan, R.; Venkatnathan, A.; Dupuis, M. J. Phys. Chem. B 2007, 111 (28), 8069-8079.

[26]. Cui, S. T.; Liu, J. W.; Selvan, M. E.; Paddison, S. J.; Keffer, D. J.; Edwards, B. J. J. Phys. Chem. B 2008, 112 (42), 13273-13284.

[27]. Eikerling, M.; Paddison, S. J.; Pratt, L. R.; Zawodzinski, T. A. Chem. Phys. Lett. 2003, 368, 108-114.

[28]. Habenicht, B. F.; Paddison, S. J.; Tuckerman, M. E. Phys. Chem. Chem. Phys. 2010, 20(30), 6342-6351.

[29]. Vilciauskas, L.; Paddison, S. J.; Kreuer, K, J. Phys. Chem. A 2009, 113, 9193-9201.

[30]. Saeed, B. A.; Elias, R. S. Eur. J. Chem. 2011, 2(4), 469-474.

[31]. Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, 1997.

[32]. Gonggo, S. T.; Radiman, C. L.; Bundjali, B.; Arcana, I. M. ITB J. Sci. A 2012, 44(3), 285-295.

[33]. Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637-4678.

Supporting Agencies

Beasiswa Pendidikan Pascasarjana Dalam Negeri (BPP-DN), Ministry of Research, Technology and Higher Education, the through Doctoral program Graduate School of Institut Teknologi Bandung, Indonesia.
Most read articles by the same author(s)

Dimensions - Altmetric - scite_ - PlumX

Downloads and views


Download data is not yet available.


Metrics Loading ...
License Terms

License Terms


Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License ( By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License ( are administered by Atlanta Publishing House LLC (European Journal of Chemistry).