European Journal of Chemistry 2016, 7(4), 442-447. doi:10.5155/eurjchem.7.4.442-447.1506

Ab initio calculation of hydration and proton transfer on sulfonated nata de coco


Sitti Rahmawati (1,*) , Cynthia Linaya Radiman (2) , Muhamad Abdulkadir Martoprawiro (3)

(1) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
(2) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
(3) Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
(*) Corresponding Author

Received: 03 Nov 2016, Accepted: 22 Nov 2016, Published: 31 Dec 2016

Abstract


The repeating unit of sulfonated “nata de coco” is D-glucose sulfonate. This research aims to determine the most stable structures of sulfonated nata de coco polymer membrane, the energy and hydrogen bonds, in order to understand the characteristics, local hydration, and proton transfer on the membrane on the ab initio electronic structure calculation. The minimum energy structure for its monomer (two, three, four and five) are calculated by B3LYP/6-311G (d) method. The calculations show that there is no significant energy change on the structure interaction of two, three, four and five monomer of sulfonated nata de coco with one water molecule, which is about -18.82 kcal/mole. Those calculations that two monomers form of sulfonated nata de coco might be used to further calculation and research, because it can be considered as the representative for their polymer. The optimization and B3LYP/6-311G (d) calculation shows the amount of water molecule used for proton transfer is closely related to the formation of hydrogen bonding with sulfonic group. By the addition of one or two water molecule, the dissociated proton is stabilized by formation of hydronium ion. For further addition of water molecule (three to ten water molecules), the proton dissociation is also stabilized by the formation of Zundel ion and Eigen ion. The calculation of interaction energy with n water molecule (n = 1-10) shows that both energy change (∆E), and enthalpy change (∆H) are more negative. This implies that the interaction with water molecule is stronger. The bonding energy is about 14.0-16.5 kcal/mole per water molecule. On the addition of four and eight water molecules, proton dissociation forms two Zundel ion and two Eigen ions and causes lower bonding energy about 2 kcal/mole. Those optimization and energy calculations conclude that the formation of hydrogen bonding among water molecule and sulfonic group affects proton transfer on sulfonated nata de coco membrane.


Keywords


Energy; Fuel cell; Proton transfer; Proton dissociation; Ab initio calculation; Sulfonated nata de coco

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.7.4.442-447.1506

Article Metrics


This Abstract was viewed 521 times | PDF Article downloaded 155 times

References

[1]. Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K. T.; Lee, J. H. Prog. Polym. Sci. 2011, 36, 813-843.
https://doi.org/10.1016/j.progpolymsci.2011.01.003

[2]. Hooger, G. Fuel Cell Technology Handbook, 2nd edition, CRC Press, 2013.

[3]. Won, J.; Choi, S. W.; Kang, S.; Ha, H. Y.; Oh, I. H.; Kim, H. S.; Kim, K. T.; Jo, W. H. J. Memb. Sci. 2003, 214, 245-257.
https://doi.org/10.1016/S0376-7388(02)00555-0

[4]. Kuang, K.; Easler, K. Fuel Cell Electronics Pakaging, Springer, 2007.
https://doi.org/10.1007/978-0-387-47324-6

[5]. Zaidi, S. J.; Matsuura, T. Polymer Membranes for Fuel Cells, Springer, 2009.

[6]. Youssef, M. E.; Nadi, K. E. A.; Khalil, M. H. Int. J. Electrochem. Sci. 2010, 5, 267-277.

[7]. Mehta, V.; Cooper, J. S. J. Power Sources 2003, 114, 32-53.
https://doi.org/10.1016/S0378-7753(02)00542-6

[8]. Smitha, B.; Sridhar, S.; Khan, A. A. J. Memb. Sci. 2005, 259, 10-26.
https://doi.org/10.1016/j.memsci.2005.01.035

[9]. Mecheri, B.; D'Epifanio, A.; Traversa, E.; Licoccia, S. J. Power Sources 2008, 178(2), 554-560
https://doi.org/10.1016/j.jpowsour.2007.09.072

[10]. Song, Y. A.; Batista, C.; Sarpeshkar, R.; Han, J. J. Power Sources 2008, 183, 674-677.
https://doi.org/10.1016/j.jpowsour.2008.05.085

[11]. Chen, S. L.; Krishnan, L.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. J. Memb. Sci. 2004, 242, 327-333.
https://doi.org/10.1016/j.memsci.2004.06.037

[12]. Shin, J. P.; Chang, B. J.; Kim, J. H.; Lee, S. B.; Suh, D. H. J. Memb. Sci. 2005, 251, 247-254.
https://doi.org/10.1016/j.memsci.2004.09.050

[13]. Wilkinson, D. P.; Zhang, J.; Hui, R.; Fergus, J.; Li, X. Proton Exchange Membrane Fuel Cell, Materials Properties and Performance, CRC Press, 2010.

[14]. Haile, S. M. J. Acta Materialia 2003, 51, 5981-6000.
https://doi.org/10.1016/j.actamat.2003.08.004

[15]. Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. J. Power Sources 2007, 169, 221-238.
https://doi.org/10.1016/j.jpowsour.2007.03.044

[16]. Liu, Q.; Song, L.; Zhang, Z.; Liu, X. Int. J. Energ. Enviro. 2010, 1, 643-656.

[17]. Radiman, C. L.; Rifathin, A. J. Appl. Polym. Sci. 2013, 130, 399-405.
https://doi.org/10.1002/app.39180

[18]. Paddison, S. J.; Elliott, J. A. J. Phys. Chem. A 2005, 109, 7583-7593.
https://doi.org/10.1021/jp0524734

[19]. Paddison, S. J.; Elliott, J. A. Phys. Chem. Chem. Phys. 2006, 8, 2193-2203.
https://doi.org/10.1039/b602188c

[20]. Wang, C.; Paddison, S. J. J. Phys. Chem. 2013, 117, 650-660.
https://doi.org/10.1021/jp310354p

[21]. Khokhlov, A. R.; Khalatur, P. G. Chem. Phys. Lett. 2008, 461, 58-63.
https://doi.org/10.1016/j.cplett.2008.06.054

[22]. Wu, D. S.; Paddison, S. J.; Elliott, J. A. Macromolecules 2009, 42(9), 3358-3367.
https://doi.org/10.1021/ma900016w

[23]. Urata, S.; Irisawa, J.; Takada, A.; Shinoda, W.; Tsuzuki, S.; Mikami, M. J. Phys. Chem. B 2005, 109(36), 17274-17280.
https://doi.org/10.1021/jp052647h

[24]. Venkatnathan, A.; Devanathan, R.; Dupuis, M. J. Phys. Chem. B 2007, 111 (25), 7234-7244.
https://doi.org/10.1021/jp0700276

[25]. Devanathan, R.; Venkatnathan, A.; Dupuis, M. J. Phys. Chem. B 2007, 111 (28), 8069-8079.
https://doi.org/10.1021/jp0726992

[26]. Cui, S. T.; Liu, J. W.; Selvan, M. E.; Paddison, S. J.; Keffer, D. J.; Edwards, B. J. J. Phys. Chem. B 2008, 112 (42), 13273-13284.
https://doi.org/10.1021/jp8039803

[27]. Eikerling, M.; Paddison, S. J.; Pratt, L. R.; Zawodzinski, T. A. Chem. Phys. Lett. 2003, 368, 108-114.
https://doi.org/10.1016/S0009-2614(02)01733-5

[28]. Habenicht, B. F.; Paddison, S. J.; Tuckerman, M. E. Phys. Chem. Chem. Phys. 2010, 20(30), 6342-6351.

[29]. Vilciauskas, L.; Paddison, S. J.; Kreuer, K, J. Phys. Chem. A 2009, 113, 9193-9201.
https://doi.org/10.1021/jp903005r

[30]. Saeed, B. A.; Elias, R. S. Eur. J. Chem. 2011, 2(4), 469-474.
https://doi.org/10.5155/eurjchem.2.4.469-474.496

[31]. Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, 1997.

[32]. Gonggo, S. T.; Radiman, C. L.; Bundjali, B.; Arcana, I. M. ITB J. Sci. A 2012, 44(3), 285-295.
https://doi.org/10.5614/itbj.sci.2012.44.3.8

[33]. Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637-4678.
https://doi.org/10.1021/cr020715f


How to cite


Rahmawati, S.; Radiman, C.; Martoprawiro, M. Eur. J. Chem. 2016, 7(4), 442-447. doi:10.5155/eurjchem.7.4.442-447.1506
Rahmawati, S.; Radiman, C.; Martoprawiro, M. Ab initio calculation of hydration and proton transfer on sulfonated nata de coco. Eur. J. Chem. 2016, 7(4), 442-447. doi:10.5155/eurjchem.7.4.442-447.1506
Rahmawati, S., Radiman, C., & Martoprawiro, M. (2016). Ab initio calculation of hydration and proton transfer on sulfonated nata de coco. European Journal of Chemistry, 7(4), 442-447. doi:10.5155/eurjchem.7.4.442-447.1506
Rahmawati, Sitti, Cynthia Linaya Radiman, & Muhamad Abdulkadir Martoprawiro. "Ab initio calculation of hydration and proton transfer on sulfonated nata de coco." European Journal of Chemistry [Online], 7.4 (2016): 442-447. Web. 16 Sep. 2019
Rahmawati, Sitti, Radiman, Cynthia, AND Martoprawiro, Muhamad. "Ab initio calculation of hydration and proton transfer on sulfonated nata de coco" European Journal of Chemistry [Online], Volume 7 Number 4 (31 December 2016)

DOI Link: https://doi.org/10.5155/eurjchem.7.4.442-447.1506

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.