European Journal of Chemistry

Correlation analysis of the rates of solvolysis of 4-bromopiperidine: A reaction following a Grob fragmentation pathway



Main Article Content

Dennis Neil Kevill
Zoon Ha Ryu
Malcolm John D’Souza

Abstract

A Grunwald-Winstein treatment of the specific rates of solvolysis of 4-bromopiperidine gives for aqueous ethanol, methanol, acetone, and dioxane a very good logarithmic correlation against the YBr solvent ionizing power values with a slope (m value) of 0.46±0.02, consistent with the operation of a synchronous Grob fragmentation mechanism. When the organic component of the solvent is 2,2,2-trifluoroethanol (TFE), the data points show a negative deviation, consistent with an appreciable deactivating interaction of the acidic TFE component of the solvent with the lone-pair of electrons present on the nitrogen.


icon graph This Abstract was viewed 2971 times | icon graph Article PDF downloaded 607 times

How to Cite
(1)
Kevill, D. N.; Ryu, Z. H.; D’Souza, M. J. Correlation Analysis of the Rates of Solvolysis of 4-Bromopiperidine: A Reaction Following a Grob Fragmentation Pathway. Eur. J. Chem. 2017, 8, 162-167.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. D'Arcy, R.; Grob, C. A.; Kaffenberger, T.; Krasnobajew, V. Helv. Chim. Acta. 1966, 49, 185-203.
https://doi.org/10.1002/hlca.660490125

[2]. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700-2707.
https://doi.org/10.1021/ja01150a078

[3]. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 2008, 61-66.
https://doi.org/10.3184/030823408X293189

[4]. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121-158.
https://doi.org/10.1002/9780470171967.ch5

[5]. Kevill, D. N. in Advances in Quantitative Structure-Property Relationships; Charton, M. Ed.; JAI Press: Greenwich, CT, USA, 1996; Volume 1, pp. 81-115.
https://doi.org/10.1016/S1874-527X(96)80006-5

[6]. Grob, C. A.; Schiess, P. W. Angew. Chem. 1967, 79, 1-14; Angew. Chem. Int. Ed. 1967, 6, 1-15.
https://doi.org/10.1002/anie.196700011

[7]. Grob, C. A. Angew. Chem. 1969, 81, 543-554; Angew. Chem. Int. Ed. 1969, 8, 535-546.
https://doi.org/10.1002/anie.196905351

[8]. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd. ed.; Harper and Row: New York, NY, USA, 1987; pp. 373-375.

[9]. Jasti, R.; Rychonovsky, S. D. Org. Lett. 2006, 8, 2175-2178.
https://doi.org/10.1021/ol0606738

[10]. Snider, B. B. The Prins Reaction and Carbonyl Ene Reactions, eds. Trost, B. M., Fleming, I., and Heathcock, C. H. Pergamon Press, New York, NY, 1991, Vol. 2, pp. 527-561.

[11]. Lee, C. L. K.; Lee, C. H. A.; Tan K. T.; Loh, T. P. Org. Lett. 2004, 6, 1281-1283.
https://doi.org/10.1021/ol049633z

[12]. Kevill, D. N.; Kolwyck K. C.; Weitl, F. L. J. Am. Chem. Soc. 1970, 92, 7300-7306.
https://doi.org/10.1021/ja00728a012

[13]. Kevill, D. N.; Dorsey, J. E. J. Org. Chem. 1969, 34, 1985-1987.
https://doi.org/10.1021/jo01258a108

[14]. Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1974, 96, 4518-4530.
https://doi.org/10.1021/ja00821a027

[15]. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741-5747.
https://doi.org/10.1021/ja00385a031

[16]. Lee, I.; Lee, H. W.; Uhm, T. S.; Sung D. D.; Ryu, Z. H. J. Korean Chem. Soc. 1988, 32, 85-93.
https://doi.org/10.12925/jkocs.2015.32.1.85

[17]. Koh, H. J.; Han, K. L.; Lee H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834-9839.
https://doi.org/10.1021/jo9814905

[18]. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846-854.
https://doi.org/10.1021/ja01182a117

[19]. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667-7675.
https://doi.org/10.1021/ja00440a037

[20]. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845-1850.
https://doi.org/10.1021/jo00005a034

[21]. Kevill, D. N.; Rissmann, T. J. J. Chem. Soc., Perkin Trans. 2 1984, 717-720.
https://doi.org/10.1039/p29840000717

[22]. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120-2128.
https://doi.org/10.1021/jo9714270

[23]. D'Souza, M. J.; Sandosky, B.; Fernandez-Bueno, G. A.; McAneny M. J.; Kevill, D. N. Can. Chem. Trans. 2014, 2, 160-174.

[24]. Kevill, D. N.; D'Souza M. J.; Ren, H. Can. J. Chem. 1998, 76, 751-757.
https://doi.org/10.1139/v98-059

[25]. Kevill, D. N.; D'Souza, M. J. J. Chem Res. (S) 1994, 190-191.

[26]. McManus, S. P.; Neamati-Mazrach, N.; Hovanes, B. A.; Paley M. S.; Harris, J. M. J. Am. Chem. Soc. 1985, 107, 3392-3393.
https://doi.org/10.1021/ja00297a081

[27]. McManus, S. P.; Sedaghat-Herati, M. R.; Karaman, R. M.; Neamati-Mazrach, N.; Cowell, S. M.; Harris, J. M. J. Org. Chem. 1989, 54, 1911-1918.
https://doi.org/10.1021/jo00269a030

[28]. McManus, S. P.; Sedaghat-Herati, M. R.; Harris, J. M. Tetrahedron Lett. 1987, 28, 5299-5300.
https://doi.org/10.1016/S0040-4039(00)96712-1

[29]. McManus, S. P.; Neamati-Mazrach, N.; Karaman, R. M.; Harris, J. M. J. Org. Chem. 1986, 51, 4876-4878.
https://doi.org/10.1021/jo00375a022

[30]. McManus, S. P.; Lam, D. H. J. Org. Chem. 1978, 43, 650-651.
https://doi.org/10.1021/jo00398a028

[31]. Neamati-Mazrach, N.; McManus, S. P. Tetrahedron Lett. 1987, 28, 837-840.
https://doi.org/10.1016/S0040-4039(01)81002-9

[32]. Kevill, D. N.; Abduljaber, M. H. Croatica Chemica Acta 1992, 65, 539-546.

[33]. Bentley, T. W.; Schleyer, P. v. R. J. Am Chem. Soc. 1976, 98, 7658-7666.
https://doi.org/10.1021/ja00440a036

[34]. Harris, J. M.; McManus, S. P.; Sedaghat-Herati, M. R.; Neamati-Mazrach, N.; Kamlet, M. J.; Doherty, R. M.; Taft, R. W. Abraham, M. H. in Nucleophilicity, ed. Harris, J. M. and McManus, S. P. Advances in Chemistry No 215, American Chemical Society, Washington, D. C. , 1987, pp. 249.

[35]. Jursic, B.; Ladika, M.; Sunko, D. E. Tetrahedron 1986, 42, 911-916.
https://doi.org/10.1016/S0040-4020(01)87497-4

[36]. Chechik, V. O.; Bobylev, V. A. J. Gen. Chem. USSR. (Engl. Transl.) 1992, 62, 814-820.

[37]. Chechik, V. O.; Bobylev, V. A. Acta. Chem. Scand. 1994, 48, 837-842.
https://doi.org/10.3891/acta.chem.scand.48-0837

[38]. D'Souza, M. J.; Kevill, D. N. Recent Res. Devel. Organic Chem. 2013, 13, 1-38.

Supporting Agencies

The American Chem. Soci. Petroleum Res. Fund (PRF#38163-AC4), the National Inst. of General Med. Sci.-NIGMS (P20GM103446), IDeA prog. from the National Inst. of Health (DE-INBRE), the National Sci. Found. (NSF) EPSCoR IIA-1301765
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).