European Journal of Chemistry 2018, 9(1), 1-6. doi:10.5155/eurjchem.9.1.1-6.1680

Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies


Dennis Neil Kevill (1) orcid , Chang-Bae Kim (2) , Malcolm John D’Souza (3,*) orcid

(1) Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115-2862, USA
(2) Department of Chemistry, Dan-Kook University, Hannam-dong, Yongsan-gu, Seoul 140-714, Korea
(3) Department of Chemistry, Wesley College, 120 North State Street, Dover, Delaware 19901-3875, USA
(*) Corresponding Author

Received: 03 Jan 2018, Accepted: 26 Jan 2018, Published: 31 Mar 2018

Abstract


A Grunwald-Winstein treatment of the specific rates of solvolysis of α-bromoisobutyro phenone in 100% methanol and in several aqueous ethanol, methanol, acetone, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) mixtures gives a good logarithmic correlation against a linear combination of NT (solvent nucleophilicity) and YBr (solvent ionizing power) values. The l and m sensitivity values are compared to those previously reported for α-bromoacetophenone and to those obtained from parallel treatments of literature specific rate values for the solvolyses of several tertiary mesylates containing a C(=O)R group attached at the α-carbon. Kinetic data obtained earlier by Pasto and Sevenair for the solvolyses of the same substrate in 75% aqueous ethanol (by weight) in the presence of silver perchlorate and perchloric acid are analysed using multiple regression analysis.


Keywords


Solvolysis; Mechanism; Correlation; α-Bromoisobutyrophenone; 2-Benzoyl-2-bromopropane; Grunwald-Winstein equations

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.9.1.1-6.1680

Article Metrics


This Abstract was viewed 675 times | PDF Article downloaded 171 times

References

[1]. Kevill, D. N.; Kim, C. B. J. Org. Chem. 2005, 70, 1490-1493.
https://doi.org/10.1021/jo048103d

[2]. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846-854.
https://doi.org/10.1021/ja01182a117

[3]. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700-2707.
https://doi.org/10.1021/ja01150a078

[4]. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 2008, 61-66.
https://doi.org/10.3184/030823408X293189

[5]. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121-158.

[6]. Kevill, D. N. in Advances in Quantitative Structure-Property Relationships; Charton, M. Ed.; JAI Press: Greenwich, CT. USA, 1996; Volume 1, pp 81-115.
https://doi.org/10.1016/S1874-527X(96)80006-5

[7]. Pasto, D. J.; Garves, K.; Serve, M. P. J. Org. Chem. 1967, 32, 774-778.
https://doi.org/10.1021/jo01278a057

[8]. Schadt, F. L.; Bentley, T. W.; Schleyer, P. V. R. J. Am. Chem. Soc. 1976, 98, 7667-7675.
https://doi.org/10.1021/ja00440a037

[9]. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845-1850.
https://doi.org/10.1021/jo00005a034

[10]. Creary, X. J. Am. Chem. Soc. 1984, 106, 5568-5577.
https://doi.org/10.1021/ja00331a029

[11]. Creary, X. Acc. Chem. Res. 1985, 18, 3-8.
https://doi.org/10.1021/ar00109a002

[12]. Creary, X. Chem. Rev. 1991, 91, 1842-1878.
https://doi.org/10.1021/cr00008a001

[13]. Begue, J. P.; Charpentier-Morize, M. Acc. Chem. Res. 1980, 13, 207-212.
https://doi.org/10.1021/ar50151a003

[14]. Kevill, D. N. in the Chemistry of the Functional Groups, Supplement D (Eds. Patai, S. and Rappoport, Z.), John Wiley and Sons, New York, 1983, Chapter 20, pp. 933-984.

[15]. Pasto, D. J.; Sevenair, J. P. J. Am. Chem. Soc. 1971, 93, 711-716.
https://doi.org/10.1021/ja00732a026

[16]. Kevill, D. N.; Kolwyck, K. C.; Weitl, F. L. J. Am. Chem. Soc. 1970, 92, 7300-7306.
https://doi.org/10.1021/ja00728a012

[17]. Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1974, 96, 4518-4530.
https://doi.org/10.1021/ja00821a027

[18]. Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Chem. Soc., Perkin Trans. 2 1980, 1244-1252.
https://doi.org/10.1039/P29800001244

[19]. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741-5747.
https://doi.org/10.1021/ja00385a031

[20]. Kevill, D. N.; Ryu, Z. H. Int. J. Mol. Sci. 2006, 7, 451-455.
https://doi.org/10.3390/i7100451

[21]. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 1993, 5, 174-175.

[22]. Kevill, D. N.; Anderson, S. W.; Fujimoto, E. K. in Nucleophilicity (Eds. Harris, J. M. and McManus, S. P.), Advances in Chemistry Series, No. 215, American Chemical Society, Washington, DC, 1987, pp. 269-283.

[23]. Bentley, T. W.; Carter, G. E. J. Org. Chem. 1983, 48, 579-584.
https://doi.org/10.1021/jo00152a033

[24]. Hoffmann, H. M. R. J. Chem. Soc. 1965, 6762-6769.
https://doi.org/10.1039/jr9650006762

[25]. Abraham, M. H.; Grellier, P. L.; Abboud, J. L. M.; Doherty, R. M.; Taft, R. W. Can. J. Chem. 1988, 66, 2673-2686.
https://doi.org/10.1139/v88-420

[26]. Bentley, T. W.; Bowen, C. T.; Brown, H. C.; Chloupek, F. J. J. Org. Chem. 1981, 46, 38-42.
https://doi.org/10.1021/jo00314a008

[27]. Ingold, C. K. Structure and Mechanism in Organic Chemistry, 2nd Ed.; Cornell University Press: Ithaca, N.Y., USA, 1969; pp. 454-457.

[28]. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, NY, USA, 1987; pp. 373-375.

[29]. Slutsky, J.; Bingham, R. C.; Schleyer, P. V. R.; Dickason, W. C.; Brown, H. C. J. Am. Chem. Soc. 1974, 96, 1969-1970.
https://doi.org/10.1021/ja00813a071

[30]. Isaacs, N. Physical Organic Chemistry, 2nd ed, Addison Wesley Longman, Harlow, Essex, UK, 1995, pp. 449-450.

[31]. Fry, J. L.; Lancelot, C. J.; Lam, L. K. M.; Harris, J. M.; Bingham, R. C.; Raber, D. J.; Hall, R. E.; Schleyer, P. V. R. J. Am. Chem. Soc. 1970, 92, 2538-2540.
https://doi.org/10.1021/ja00711a053

[32]. Cope, A. C.; Graham, E. S. J. Am. Chem. Soc. 1951, 73, 4702-4706.
https://doi.org/10.1021/ja01154a065

[33]. Kevill, D. N.; Cromwell, N. H. J. Org. Chem. 1964, 29, 499-502.
https://doi.org/10.1021/jo01025a516

[34]. Kevill, D. N.; Park, K. H.; Koh, H. J. J. Phys. Org. Chem. 2011, 24, 378-384.
https://doi.org/10.1002/poc.1767

[35]. Kevill, D. N.; Goken, E. G.; Park, B. C. J. Chem. Res. 2006, 173-175.
https://doi.org/10.3184/030823406776330639

[36]. D'Souza, M. J; Ryu, Z. H.; Park, B. C.; Kevill, D. N. Can. J. Chem. 2008, 86, 359-367.
https://doi.org/10.1139/v08-028

[37]. D'Souza, M. J.; Shuman, K. E.; Omondi, A. O.; Kevill, D. N. Eur. J. Chem. 2011, 2, 130-135.
https://doi.org/10.5155/eurjchem.2.2.130-135.405

[38]. Kyong, J. B.; Lee, Y.; D'Souza, M. J.; Mahon, B. P.; Kevill, D. N. Eur. J. Chem. 2012, 3, 267-272.
https://doi.org/10.5155/eurjchem.3.3.267-272.624

[39]. Kevill, D. N.; Ryu, Z. H.; D'Souza, M. J. Eur. J. Chem. 2017, 8, 162-167.
https://doi.org/10.5155/eurjchem.8.2.162-167.1566


How to cite


Kevill, D.; Kim, C.; D’Souza, M. Eur. J. Chem. 2018, 9(1), 1-6. doi:10.5155/eurjchem.9.1.1-6.1680
Kevill, D.; Kim, C.; D’Souza, M. Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies. Eur. J. Chem. 2018, 9(1), 1-6. doi:10.5155/eurjchem.9.1.1-6.1680
Kevill, D., Kim, C., & D’Souza, M. (2018). Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies. European Journal of Chemistry, 9(1), 1-6. doi:10.5155/eurjchem.9.1.1-6.1680
Kevill, Dennis, Chang-Bae Kim, & Malcolm John D’Souza. "Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies." European Journal of Chemistry [Online], 9.1 (2018): 1-6. Web. 21 Sep. 2019
Kevill, Dennis, Kim, Chang-Bae, AND D’Souza, Malcolm. "Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies" European Journal of Chemistry [Online], Volume 9 Number 1 (31 March 2018)

DOI Link: https://doi.org/10.5155/eurjchem.9.1.1-6.1680

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).


© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.