European Journal of Chemistry 2017, 8(3), 224-228. doi:10.5155/eurjchem.8.3.224-228.1569

Nanostructured thin film of iron tin oxide by aerosol assisted chemical vapour deposition using a new ferrocene containing heterobimetallic complex as single-source precursor


Sohail Saeed (1,*) , Nasir Khan (2) , Ray Butcher (3) , Naghmana Rashid (4)

(1) National Engineering and Scientific Commission, Islamabad, 45320, Pakistan
(2) Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
(3) Chemistry Department, Howard University, Washington, DC 20059, USA
(4) Department of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, 45320, Pakistan
(*) Corresponding Author

Received: 19 Mar 2017, Accepted: 26 Jun 2017, Published: 30 Sep 2017

Abstract


Aerosol assisted chemical vapour deposition (CVD) is a sophisticated, unique and modern technique which is used to deposit coatings, films, and other related structures from thermally unstable or the involatile precursors at laboratory and large scale productions. A light weight semiconducting and ceramic oxide based coatings on appropriate substrates can be produced at a lower cost by employing chemical vapour deposition method. There is broader choice of chemical precursors and their availability for obtaining high quality thin films at lower cost and the reaction environment is more flexible ranging from low pressure to atmospheric pressure in CVD. New ferrocene containingheterobimetallic precursor, [C58H80Fe2O4Sn2] has been synthesized and characterized by elemental analysis, FT-IR spectroscopy, thermogravimetric analysis and molecular structure was determined by X-ray single crystal analysis. The heterobimetallic complex was used as a single-source precursor for the growth of iron tin oxide thin film by aerosol assisted chemical vapor deposition. The deposited thin film was characterized by X-ray diffractometer, scanning electron microscopy and atomic force microscopy techniques. The average roughness of deposited film at 425 °C from heterobimetallic precursor was in the range of 4.39 nm. The deposited thin film on glass strip was found to have no cracks, excellent adhesion and to be crystalline in nature and free from any carboneous impurities.


Keywords


Crystallites; X-Ray Diffractometer; Iron tin oxide thin film; Single-source precursor; Heterobimetallic complex; Aerosol assisted chemical vapour deposition

Full Text:

PDF /    /


DOI: 10.5155/eurjchem.8.3.224-228.1569

Article Metrics


This Abstract was viewed 412 times | PDF Article downloaded 128 times

References

[1]. Brown, K. R.; Fox, A. P.; Natan, M. J. J. Am. Chem. Soc. 1996, 118(5), 1154-1157.
https://doi.org/10.1021/ja952951w

[2]. Kormunda, M.; Pavlik, J. Vacuum 2011, 85(9), 871-874.
https://doi.org/10.1016/j.vacuum.2010.12.013

[3]. Sun, J.; Liu, H.; Jiang, J.; Lu, A.; Wan, Q. J. Mater. Chem. 2010, 20(37), 8010-8015.
https://doi.org/10.1039/c0jm01233e

[4]. Gubbala, S.; Chakrapani, V.; Kumar, V.; Sunkara, M. K. Adv. Funct. Mater. 2008, 18(16), 2411-2418.
https://doi.org/10.1002/adfm.200800099

[5]. Wang, B.; Zhu, L.; Yang, Y.; Xu, N.; Yang, G. J. Phys. Chem. C 2008, 112 (17), 6643-6647.
https://doi.org/10.1021/jp8003147

[6]. Kida, T.; Doi, T.; Shimanoe, K. Chem. Mater. 2010, 22(8), 2662-2667.
https://doi.org/10.1021/cm100228d

[7]. Sarala-Devi, G.; Manorama, S.; Rao, V. Sens. Actuators B: Chem. 1995, 28(1), 31-37.
https://doi.org/10.1016/0925-4005(94)01535-P

[8]. Pan, J.; Ganesan, R.; Shen, H.; Mathur, S. J. Phys. Chem. C 2010, 114(18), 8245-8250.
https://doi.org/10.1021/jp101072f

[9]. Deskins, N. A.; Rousseau, R.; Dupuis, M. J. Phys. Chem. C 2010, 114(13), 5891-5897.
https://doi.org/10.1021/jp101155t

[10]. Yamazoe, N. Sen. Actuators B: Chem. 1991, 5(1-4), 7-19.

[11]. Rani, S.; Roy, S. C.; Bhatnagar, M. Sens. Actuators B: Chem. 2007, 122(1), 204-210.
https://doi.org/10.1016/j.snb.2006.05.032

[12]. Siciliano, P. Sens. Actuators B: Chem. 2000, 70(1-3), 153-164.
https://doi.org/10.1016/S0925-4005(00)00585-2

[13]. Mehraj, S. Sci. Adv. Mater. 2012, 4(12), 1258-1267.
https://doi.org/10.1166/sam.2012.1421

[14]. Liao, M. H.; Chen, D. H. J. Mater. Chem. 2002, 12, 3654-3659.
https://doi.org/10.1039/b207158d

[15]. Jing, Z.; Wu, S. Mater. Lett. 2006, 60(7), 952-956.
https://doi.org/10.1016/j.matlet.2005.10.051

[16]. Stambolova, I.; Blaskov, V.; Vassilev, S.; Shipochka, M.; Dushkin, C. J. Alloy Compd. 2010, 489(1), 257-261.
https://doi.org/10.1016/j.jallcom.2009.09.066

[17]. Yang, B.; Li, Z.; Gao, Y.; Lin, Y.; Nan, C. -W. J. Alloy Compd. 2011, 509(13), 4608-4612.
https://doi.org/10.1016/j.jallcom.2011.01.124

[18]. Alexandrescu, R.; Morjan, I.; Dumitrache, F.; Birjega, R.; Fleaca, C.; Soare, I.; Gavrila, L.; Luculescu, C.; Prodan, G.; Kuncser, V.; Filoti, G. Appl. Surf. Sci. 2011, 257(12), 5460-5464.
https://doi.org/10.1016/j.apsusc.2010.11.114

[19]. Altincekic, T. G.; Boz, I.; Baykal, A.; Kazan, S.; Topkaya, R.; Toprak, M. S. J. Alloy Compd. 2010, 493(1-2), 493-498.
https://doi.org/10.1016/j.jallcom.2009.12.140

[20]. Goya, G. F.; Rechenberg, H. R. Nanostruct. Mater. 1998, 10(6), 1001-1011.
https://doi.org/10.1016/S0965-9773(98)00133-0

[21]. Zhang, Y.; Stangle, G. C. J. Mater. Res. 1994, 9(8), 1997-2004.
https://doi.org/10.1557/JMR.1994.1997

[22]. Tamm, A.; Dimri, M. C.; Kozlova, J.; Aidla, A.; Tätte, T.; Arroval, T.; Mäeorg, U.; Mändar, H.; Stern, R.; Kukli, K. J. Cryst. Growth, 2012, 343(1), 21-27.
https://doi.org/10.1016/j.jcrysgro.2011.09.062

[23]. Veith, M. J. Chem. Soc. Dalton Trans. 2002, 12, 2405-2412.
https://doi.org/10.1039/b201383p

[24]. Saeed, S.; Rashid, N.; Malik, M. A.; O'Brien, P.; Wong, W. T. New J. Chem. 2013, 37(10), 3214-3221.
https://doi.org/10.1039/c3nj00668a

[25]. Saeed, S.; Rashid, N.; Malik, M. A.; O'Brien, P.; Wong, W. T. J. Coord. Chem. 2013, 66(16), 2788-2801.
https://doi.org/10.1080/00958972.2013.807921

[26]. Saeed, S.; Rashid, N.; Ahmad, K. S. Turk J. Chem. 2013, 37(5), 796-804.
https://doi.org/10.3906/kim-1210-56

[27]. Saeed, S.; Hussain, R.; Butcher, R. J. J. Coord. Chem. 2014, 67(10), 1693-1701.
https://doi.org/10.1080/00958972.2014.918265

[28]. Saeed, S.; Hussain, R. J. Coord. Chem. 2014, 67(17), 2942-2953.
https://doi.org/10.1080/00958972.2014.950958

[29]. Saeed, S.; Hussain, R. Turk J. Chem. 2014, 38(3), 413-422.
https://doi.org/10.3906/kim-1305-47

[30]. Saeed, S.; Ahmad, K. S.; Rashid, N.; Malik, M. A.; O'Brien, P.; Akhtar, M.; Hussain, R.; Wong, W. T. Polyhedron 2015, 85, 267-274.
https://doi.org/10.1016/j.poly.2014.08.023

[31]. Lal, B.; Badshah, A.; Altaf, A. A.; Khan, N.; Ullah, S. Appl. Organomet. Chem. 2011, 25(12), 843-855.
https://doi.org/10.1002/aoc.1843

[32]. Lal, B.; Badshah, A.; Altaf, A. A.; Tahir, M. N.; Ullah, S.; Huq, F. Dalton Trans. 2012, 41(48), 14643-14650.
https://doi.org/10.1039/c2dt31570j

[33]. Khan, N.; Badshah, A.; Lal, B.; Malik, M. A.; Raftery, J.; O'Brien, P.; Altaf, A. A. Polyhedron 2014, 69, 40-47.
https://doi.org/10.1016/j.poly.2013.11.017

[34]. Mahon, M. F.; Molloy, K. C.; Stanley, J. E.; Rankin, D. W. H.; Robertson, H. E.; Johnston, B. F. Appl. Organome. Chem. 2005, 19(5), 658-671.
https://doi.org/10.1002/aoc.722

[35]. Tiekink, E. R. T. Trend Organomet. Chem. 1994, 1(1), 71-116.

[36]. Baur, W. H.; Khan, A. A. Acta Crystallogr. Sect. B 1971, 27, 2133-2139.
https://doi.org/10.1107/S0567740871005466

[37]. Knapp, C. E.; Hyett, G.; Parkin, I. P.; Carmalt, C. J. Chem. Mater. 2011, 23(7), 1719-1726.
https://doi.org/10.1021/cm102292b

[38]. Castro, R. H. R.; Hidalgo, P.; Muccillo, R. Gouvea, D. Appl. Surf. Sci. 2003, 214(1-4), 172-177.
https://doi.org/10.1016/S0169-4332(03)00274-5

[39]. Barnes, T. M.; Hand, S.; Leaf, J.; Wolden, C. A. J. Vac. Sci. Technol. 2004, 22(5), 2118-2125.
https://doi.org/10.1116/1.1772373


How to cite


Saeed, S.; Khan, N.; Butcher, R.; Rashid, N. Eur. J. Chem. 2017, 8(3), 224-228. doi:10.5155/eurjchem.8.3.224-228.1569
Saeed, S.; Khan, N.; Butcher, R.; Rashid, N. Nanostructured thin film of iron tin oxide by aerosol assisted chemical vapour deposition using a new ferrocene containing heterobimetallic complex as single-source precursor. Eur. J. Chem. 2017, 8(3), 224-228. doi:10.5155/eurjchem.8.3.224-228.1569
Saeed, S., Khan, N., Butcher, R., & Rashid, N. (2017). Nanostructured thin film of iron tin oxide by aerosol assisted chemical vapour deposition using a new ferrocene containing heterobimetallic complex as single-source precursor. European Journal of Chemistry, 8(3), 224-228. doi:10.5155/eurjchem.8.3.224-228.1569
Saeed, Sohail, Nasir Khan, Ray Butcher, & Naghmana Rashid. "Nanostructured thin film of iron tin oxide by aerosol assisted chemical vapour deposition using a new ferrocene containing heterobimetallic complex as single-source precursor." European Journal of Chemistry [Online], 8.3 (2017): 224-228. Web. 17 Sep. 2019
Saeed, Sohail, Khan, Nasir, Butcher, Ray, AND Rashid, Naghmana. "Nanostructured thin film of iron tin oxide by aerosol assisted chemical vapour deposition using a new ferrocene containing heterobimetallic complex as single-source precursor" European Journal of Chemistry [Online], Volume 8 Number 3 (30 September 2017)

DOI Link: https://doi.org/10.5155/eurjchem.8.3.224-228.1569

Refbacks

  • There are currently no refbacks.




Copyright (c)




© Copyright 2019  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2019 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 4614 Lavista road, Tucker, GA, 30084, USA. Registered in USA.