

Crystal structure of 1-benzoyl-2,7-dimethoxy-8-(3,5-dimethylbenzoyl) naphthalene: Head-to-head fashioned molecular motif for accumulating weak non-classical hydrogen bonds
Takeshi Yokoyama (1)







(1) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
(2) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
(3) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
(4) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
(5) Faculty of Chemistry, Warsaw University of Technology, 00664, Warsaw, Poland
(6) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
(7) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
(*) Corresponding Author
Received: 10 Apr 2017 | Revised: 08 May 2017 | Accepted: 10 May 2017 | Published: 30 Jun 2017 | Issue Date: June 2017
Abstract
Title compound, 1-benzoyl-2,7-dimethoxy-8-(3,5-dimethylbenzoyl)naphthalene, an unsymmetrically substituted aromatic diketone compound having non-coplanarly accumulated aromatic rings structure, has been synthesized and its crystal structure has been determined by X-ray crystallography. The asymmetric unit of title compound contains two independent conformers. For each conformer, the two aroyl groups are non-coplanarly situated against the naphthalene ring plane and oriented in an opposite direction. The 3,5-dimethylbenzoyl group leans more than the non-substituted benzoyl group on the other peri-position of the naphthalene ring. The characteristics in the single molecular crystal structure of this unsymmetrical compound show unique relationship with two symmetrically substituted homologues, namely 1,8-dibenzoyl-2,7-dimethoxynaphthalene and 2,7-dimethoxy-1,8-bis(3,5-dimethylbenzoyl) naphthalene. Dihedral angles between 3,5-dimethylbenzene ring and naphthalene ring of 2,7-dimethoxy-1,8-bis(3,5-dimethylbenzoyl)naphthalene are larger than those between benzene ring and naphthalene ring of 1,8-dibenzoyl-2,7-dimethoxynaphthalene. Dihedral angle between 3,5-dimethylbenzoyl group and naphthalene ring in title compound is close to those of symmetrical homologue having two 3,5-dimethylbenzoyl groups. In the similar manner, dihedral angle between non-substituted benzoyl group and naphthalene ring in title compound is also close to those of symmetrical homologue bearing two non-substituted benzoyl groups. On the other hand, the crystal packing of title compound has rather similar feature with 2,7-dimethoxy-1,8-bis(3,5-dimethylbenzoyl)naphthalene. Two compounds have common crystalline molecular structural motif of head-to-head fashioned intermolecular interaction of 3,5-dimethylbenzoyl moieties. It is interpreted that the interactions between (sp3)C–H and π orbital preferentially govern the molecular packing motif. Molecular structure feature of title compound and the symmetrically 3,5-dimethylbenzoylated homologue strongly manifests that accumulation of weak non-classical hydrogen bonds play a crucial role in determination of the crystal packing rather than sole function of stronger non-classical hydrogen bond and π…π stacking.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.8.2.188-194.1572
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 184-8588, Koganei, Tokyo, Japan
Citations
[1]. Teresa L. Mako, Joan M. Racicot, Mindy Levine
Supramolecular Luminescent Sensors
Chemical Reviews 119(1), 322, 2019
DOI: 10.1021/acs.chemrev.8b00260

References
[1]. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry, 2nd edn, Oxford University Press, London, 1940.
[2]. Atkins, P. General Chemistry, Scientific American Books, New York, 1989.
[3]. Desiraju, G. R. J. Mol. Struct. 2003, 656, 5-15.
https://doi.org/10.1016/S0022-2860(03)00354-5
[4]. Desiraju, G. R. Cryst. Growth Des. 2011, 11, 896-898.
https://doi.org/10.1021/cg200100m
[5]. Aakeroy, C. B.; Seddon, K. R. Chem. Soc. Rev. 1993, 22, 397-407.
https://doi.org/10.1039/CS9932200397
[6]. Desiraju, G. R. Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989.
[7]. Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34(21), 2311-2327.
https://doi.org/10.1002/anie.199523111
[8]. Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogishi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138 (20), 6617-6628.
https://doi.org/10.1021/jacs.6b02968
[9]. Sasaki, T.; Ida, Y.; Hisaki, I.; Tsuzuki, S.; Tohnai, N.; Coquerel, G.; Sato, H.; Miyata, M. Crystal Growth Design 2016, 16(3), 1626-1635.
https://doi.org/10.1021/acs.cgd.5b01724
[10]. Etter, M. C. Acc. Chem. Res. 1990, 23, 120‐126.
https://doi.org/10.1021/ar00172a005
[11]. Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511-544.
https://doi.org/10.1146/annurev.physchem.48.1.511
[12]. Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112(14), 5525-5534.
https://doi.org/10.1021/ja00170a016
[13]. Jones, P. G.; Vancea, F. Cryst. Eng. Comm. 2003, 5, 303-304.
https://doi.org/10.1039/B309038H
[14]. Khavasi, H. R.; Salimi, A. R.; Eshtiagh-Hosseini, H.; Amini, M. M. Cryst. Eng. Comm. 2011, 13, 3710-3717.
https://doi.org/10.1039/c0ce00981d
[15]. Dhinakaran, M. K.; Soundarajan, K.; Das, T. M. New J. Chem. 2014, 38, 4371–4379.
https://doi.org/10.1039/C4NJ00415A
[16]. Kong, Y. B.; Zhu, J. Y.; Chen, Z. W.; Liu, L. X. Canadian J. Chem. 2014, 92(4), 269-273.
https://doi.org/10.1139/cjc-2013-0435
[17]. Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290-296.
https://doi.org/10.1021/ar00010a002
[18]. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond, In Structural Chemistry and Biology, Oxford University Press Inc., New York, 2001.
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001
[19]. Surov, A. O.; Manin, A. N.; Voronin, A. P.; Churakov, A. V.; Perlovich, G. L.; Vener, M. V. Crystal Growth Design 2017, 17(3), 1425-1437.
https://doi.org/10.1021/acs.cgd.7b00019
[20]. Okamoto, A.; Yonezawa, N. J. Synth. Org. Chem. Jpn. 2015, 73(4), 339-360.
https://doi.org/10.5059/yukigoseikyokaishi.73.339
[21]. Okamoto, A.; Muto, T.; Siqingaowa; Takahara, G.; Yonezawa, N. Eur. J. Chem. 2017, 8(1), 33‐41.
https://doi.org/10.5155/eurjchem.8.1.33-41.1529
[22]. Ogata, K.; Nagasawa, A.; Yonezawa, N.; Okamoto, A. Eur. J. Chem. 2017, 8(1), 20-24.
https://doi.org/10.5155/eurjchem.8.1.20-24.1530
[23]. Takahara, G.; Sakamoto, R.; Ogata, K.; Ohisa, S.; Mido,T.; Yokoyama,T.; Yonezawa, N.; Okamoto, A. Eur. Chem. Bull. 2017, 6(1), 31–37.
[24]. Siqingaowa; Tsumuki, T.; Ogata, K.; Yonezawa, N.; Okamoto, A. Acta Cryst. E 2016, 72, 1819-1823.
https://doi.org/10.1107/S2056989016018077
[25]. Okamoto, A.; Watanabe, S.; Nakaema, K.; Yonezawa, N. Cryst. Str. Theo. Appl. 2012, 1,121-127.
[26]. Muto, T.; Sasagawa, K.; Okamoto, A.; Oike, H.; Yonezawa. N. Acta Cryst. E 2012, 68, o1200-o1200.
https://doi.org/10.1107/S1600536812012202
[27]. Armarego, W.L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth edition, Reed Educational and Professional Publishing Ltd, Oxford, 1996, pp. 9-206.
[28]. Kato, Y.; Nagasawa, A.; Hijikata, D.; Okamoto, A.; Yonezawa, N. Acta Cryst. E 2010, 66, o2659-o2659.
https://doi.org/10.1107/S1600536810038195
[29]. Rigaku (1998). PROCESS‐AUTO. Rigaku Corporation, Tokyo, Japan.
[30]. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
[31]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. 2007, 40, 609‐613.
https://doi.org/10.1107/S0021889807010941
[32]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112‐122.
https://doi.org/10.1107/S0108767307043930
[33]. Burnett, M. N.; Johnson, C. K. (1996). ORTEPIII. Report ORNL‐ 6895. Oak Ridge National Laboratory, Tennessee, USA.
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.8.2.188-194.1572

















European Journal of Chemistry 2017, 8(2), 188-194 | doi: https://doi.org/10.5155/eurjchem.8.2.188-194.1572 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c)
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.