European Journal of Chemistry

Crystal structure of 1-benzoyl-2,7-dimethoxy-8-(3,5-dimethylbenzoyl) naphthalene: Head-to-head fashioned molecular motif for accumulating weak non-classical hydrogen bonds



Main Article Content

Takeshi Yokoyama
Takahiro Mido
Genta Takahara
Kazuki Ogata
Elżbieta Chwojnowska
Noriyuki Yonezawa
Akiko Okamoto

Abstract

Title compound, 1-benzoyl-2,7-dimethoxy-8-(3,5-dimethylbenzoyl)naphthalene, an unsymmetrically substituted aromatic diketone compound having non-coplanarly accumulated aromatic rings structure, has been synthesized and its crystal structure has been determined by X-ray crystallography. The asymmetric unit of title compound contains two independent conformers. For each conformer, the two aroyl groups are non-coplanarly situated against the naphthalene ring plane and oriented in an opposite direction. The 3,5-dimethylbenzoyl group leans more than the non-substituted benzoyl group on the other peri-position of the naphthalene ring. The characteristics in the single molecular crystal structure of this unsymmetrical compound show unique relationship with two symmetrically substituted homologues, namely 1,8-dibenzoyl-2,7-dimethoxynaphthalene and 2,7-dimethoxy-1,8-bis(3,5-dimethylbenzoyl) naphthalene. Dihedral angles between 3,5-dimethylbenzene ring and naphthalene ring of 2,7-dimethoxy-1,8-bis(3,5-dimethylbenzoyl)naphthalene are larger than those between benzene ring and naphthalene ring of 1,8-dibenzoyl-2,7-dimethoxynaphthalene. Dihedral angle between 3,5-dimethylbenzoyl group and naphthalene ring in title compound is close to those of symmetrical homologue having two 3,5-dimethylbenzoyl groups. In the similar manner, dihedral angle between non-substituted benzoyl group and naphthalene ring in title compound is also close to those of symmetrical homologue bearing two non-substituted benzoyl groups. On the other hand, the crystal packing of title compound has rather similar feature with 2,7-dimethoxy-1,8-bis(3,5-dimethylbenzoyl)naphthalene. Two compounds have common crystalline molecular structural motif of head-to-head fashioned intermolecular interaction of 3,5-dimethylbenzoyl moieties. It is interpreted that the interactions between (sp3)C–H and π orbital preferentially govern the molecular packing motif. Molecular structure feature of title compound and the symmetrically 3,5-dimethylbenzoylated homologue strongly manifests that accumulation of weak non-classical hydrogen bonds play a crucial role in determination of the crystal packing rather than sole function of stronger non-classical hydrogen bond and π…π stacking.


icon graph This Abstract was viewed 1611 times | icon graph Article PDF downloaded 547 times

How to Cite
(1)
Yokoyama, T.; Mido, T.; Takahara, G.; Ogata, K.; Chwojnowska, E.; Yonezawa, N.; Okamoto, A. Crystal Structure of 1-Benzoyl-2,7-Dimethoxy-8-(3,5-Dimethylbenzoyl) Naphthalene: Head-to-Head Fashioned Molecular Motif for Accumulating Weak Non-Classical Hydrogen Bonds. Eur. J. Chem. 2017, 8, 188-194.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry, 2nd edn, Oxford University Press, London, 1940.

[2]. Atkins, P. General Chemistry, Scientific American Books, New York, 1989.

[3]. Desiraju, G. R. J. Mol. Struct. 2003, 656, 5-15.
https://doi.org/10.1016/S0022-2860(03)00354-5

[4]. Desiraju, G. R. Cryst. Growth Des. 2011, 11, 896-898.
https://doi.org/10.1021/cg200100m

[5]. Aakeroy, C. B.; Seddon, K. R. Chem. Soc. Rev. 1993, 22, 397-407.
https://doi.org/10.1039/CS9932200397

[6]. Desiraju, G. R. Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989.

[7]. Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34(21), 2311-2327.
https://doi.org/10.1002/anie.199523111

[8]. Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogishi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138 (20), 6617-6628.
https://doi.org/10.1021/jacs.6b02968

[9]. Sasaki, T.; Ida, Y.; Hisaki, I.; Tsuzuki, S.; Tohnai, N.; Coquerel, G.; Sato, H.; Miyata, M. Crystal Growth Design 2016, 16(3), 1626-1635.
https://doi.org/10.1021/acs.cgd.5b01724

[10]. Etter, M. C. Acc. Chem. Res. 1990, 23, 120‐126.
https://doi.org/10.1021/ar00172a005

[11]. Perrin, C. L.; Nielson, J. B. Annu. Rev. Phys. Chem. 1997, 48, 511-544.
https://doi.org/10.1146/annurev.physchem.48.1.511

[12]. Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112(14), 5525-5534.
https://doi.org/10.1021/ja00170a016

[13]. Jones, P. G.; Vancea, F. Cryst. Eng. Comm. 2003, 5, 303-304.
https://doi.org/10.1039/B309038H

[14]. Khavasi, H. R.; Salimi, A. R.; Eshtiagh-Hosseini, H.; Amini, M. M. Cryst. Eng. Comm. 2011, 13, 3710-3717.
https://doi.org/10.1039/c0ce00981d

[15]. Dhinakaran, M. K.; Soundarajan, K.; Das, T. M. New J. Chem. 2014, 38, 4371–4379.
https://doi.org/10.1039/C4NJ00415A

[16]. Kong, Y. B.; Zhu, J. Y.; Chen, Z. W.; Liu, L. X. Canadian J. Chem. 2014, 92(4), 269-273.
https://doi.org/10.1139/cjc-2013-0435

[17]. Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290-296.
https://doi.org/10.1021/ar00010a002

[18]. Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond, In Structural Chemistry and Biology, Oxford University Press Inc., New York, 2001.
https://doi.org/10.1093/acprof:oso/9780198509707.001.0001

[19]. Surov, A. O.; Manin, A. N.; Voronin, A. P.; Churakov, A. V.; Perlovich, G. L.; Vener, M. V. Crystal Growth Design 2017, 17(3), 1425-1437.
https://doi.org/10.1021/acs.cgd.7b00019

[20]. Okamoto, A.; Yonezawa, N. J. Synth. Org. Chem. Jpn. 2015, 73(4), 339-360.
https://doi.org/10.5059/yukigoseikyokaishi.73.339

[21]. Okamoto, A.; Muto, T.; Siqingaowa; Takahara, G.; Yonezawa, N. Eur. J. Chem. 2017, 8(1), 33‐41.
https://doi.org/10.5155/eurjchem.8.1.33-41.1529

[22]. Ogata, K.; Nagasawa, A.; Yonezawa, N.; Okamoto, A. Eur. J. Chem. 2017, 8(1), 20-24.
https://doi.org/10.5155/eurjchem.8.1.20-24.1530

[23]. Takahara, G.; Sakamoto, R.; Ogata, K.; Ohisa, S.; Mido,T.; Yokoyama,T.; Yonezawa, N.; Okamoto, A. Eur. Chem. Bull. 2017, 6(1), 31–37.

[24]. Siqingaowa; Tsumuki, T.; Ogata, K.; Yonezawa, N.; Okamoto, A. Acta Cryst. E 2016, 72, 1819-1823.
https://doi.org/10.1107/S2056989016018077

[25]. Okamoto, A.; Watanabe, S.; Nakaema, K.; Yonezawa, N. Cryst. Str. Theo. Appl. 2012, 1,121-127.

[26]. Muto, T.; Sasagawa, K.; Okamoto, A.; Oike, H.; Yonezawa. N. Acta Cryst. E 2012, 68, o1200-o1200.
https://doi.org/10.1107/S1600536812012202

[27]. Armarego, W.L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth edition, Reed Educational and Professional Publishing Ltd, Oxford, 1996, pp. 9-206.

[28]. Kato, Y.; Nagasawa, A.; Hijikata, D.; Okamoto, A.; Yonezawa, N. Acta Cryst. E 2010, 66, o2659-o2659.
https://doi.org/10.1107/S1600536810038195

[29]. Rigaku (1998). PROCESS‐AUTO. Rigaku Corporation, Tokyo, Japan.

[30]. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

[31]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. 2007, 40, 609‐613.
https://doi.org/10.1107/S0021889807010941

[32]. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112‐122.
https://doi.org/10.1107/S0108767307043930

[33]. Burnett, M. N.; Johnson, C. K. (1996). ORTEPIII. Report ORNL‐ 6895. Oak Ridge National Laboratory, Tennessee, USA.

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).