

Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds
Kikuko Iida (1)







(1) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(2) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(3) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(4) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(5) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(6) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(7) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(*) Corresponding Author
Received: 01 Mar 2021 | Revised: 16 Apr 2021 | Accepted: 17 Apr 2021 | Published: 30 Jun 2021 | Issue Date: June 2021
Abstract
The title compound lies about a crystallographic inversion centre located at the terephthalate moiety. The two peri-benzoylnaphthalene units having atrope chirality are also situated centrosymmetrically. In the two peri-benzoylnaphthalene moieties, two benzoyl groups are substituted at 1 and 8 carbons of the naphthalene ring in anti-orientation. Then two absolute configurations of peri-benzoylnaphthalene moieties are consequently assigned as complementary to each other, i.e., one unit has R,R-configuration and the other S,S-one, respectively. The two benzoyl groups in peri-benzoylnaphthalene moiety and the terephthalate phenylene ring are non-coplanarly located against the naphthalene ring. The dihedral angles of each benzene ring of two benzoyl groups and terephthalate unit with the naphthalene ring are 73.73 and 75.96, and 71.79°. In molecular packing, several kinds of weak interactions are responsible to induce three-dimensional molecular network. Especially, the synergetic effect realized through the bidentate hydrogen acceptor function in bidirectional C-H···π non-classical hydrogen bonds by the terephthalate phenylene ring moiety plausibly plays the determining role.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.12.2.147-153.2114
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Tokyo Ohka Foundation for The Promotion of Science and Technology and JSPS KAKENHI Grant No. JP20K05473, Japan
Citations
[1]. M. Kobayashi, R. Sakamoto, P. Zhang, Y. Zhao, K. Li, K. Noguchi, N. Yonezawa, A. Okamoto
Packing structure and non-classical hydrogen bonding interactions of the toluene solvate crystal of 1,8-bis(4-methylbenzoyl)naphthalene-2,7-diyl dibenzoate: Role of toluene molecule in determination of the spatial arrangement of the major constituent molecules
Molecular Crystals and Liquid Crystals 757(1), 107, 2023
DOI: 10.1080/15421406.2022.2141059

[2]. Hiroaki Iitsuka, Kun Li, Miyuki Kobayashi, Kikuko Iida, Keiichi Noguchi, Noriyuki Yonezawa, Akiko Okamoto
The crystal structure of (1R *,2S *)-1,2-bis(2-fluorophenyl)-3,8-dimethoxyacenaphthene-1,2-diol, C26H20F2O4
Zeitschrift für Kristallographie - New Crystal Structures 236(6), 1301, 2021
DOI: 10.1515/ncrs-2021-0314

References
[1]. Desiraju, G. R. Acc. Chem. Res. 1991, 24 (10), 290-296.
https://doi.org/10.1021/ar00010a002
[2]. Desiraju, G. R. Acc. Chem. Res. 1996, 29 (9), 441-449.
https://doi.org/10.1021/ar950135n
[3]. Steiner, T. Chem. Commun. (Camb.) 1997, No. 8, 727-734.
https://doi.org/10.1039/a603049a
[4]. Dang, L.-L.; Feng, H.-J.; Lin, Y.-J.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142 (44), 18946-18954.
https://doi.org/10.1021/jacs.0c09162
[5]. Gao, Y.; Yin, Q.; Wang, Q.; Li, Z.; Cai, J.; Zhao, T.; Lei, H.; Wang, S.; Zhang, Y.; Shen, B. Adv. Mater. 2020, 32 (48), e2005228.
https://doi.org/10.1002/adma.202005228
[6]. Desiraju, G. R. J. Mol. Struct. 2003, 656 (1-3), 5-15.
https://doi.org/10.1016/S0022-2860(03)00354-5
[7]. Desiraju, G. R. Cryst. Growth Des. 2011, 11 (4), 896-898.
https://doi.org/10.1021/cg200100m
[8]. Aakeröy, C. B.; Seddon, K. R. Chem. Soc. Rev. 1993, 22 (6), 397-407.
https://doi.org/10.1039/CS9932200397
[9]. Desiraju, G. R. C. E. The Design of Organic Solids; Elsevier: Amsterdam, 1989.
[10]. Desiraju, G. R. Angew. Chem. Int. Ed. Engl. 1995, 34 (21), 2311-2327.
https://doi.org/10.1002/anie.199523111
[11]. Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogoshi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138 (20), 6617-6628.
https://doi.org/10.1021/jacs.6b02968
[12]. Sasaki, T.; Ida, Y.; Hisaki, I.; Tsuzuki, S.; Tohnai, N.; Coquerel, G.; Sato, H.; Miyata, M. Cryst. Growth Des. 2016, 16 (3), 1626-1635.
https://doi.org/10.1021/acs.cgd.5b01724
[13]. Budiman, Y. P.; Jayaraman, A.; Friedrich, A.; Kerner, F.; Radius, U.; Marder, T. B. J. Am. Chem. Soc. 2020, 142 (13), 6036-6050.
https://doi.org/10.1021/jacs.9b11871
[14]. Bondue, C. J.; Koper, M. T. M. J. Am. Chem. Soc. 2019, 141 (30), 12071-12078.
https://doi.org/10.1021/jacs.9b05397
[15]. Elsberg, J. G. D.; Anderson, S. N.; Tierney, D. L.; Reinheimer, E. W.; Berreau, L. M. Dalton Trans. 2021, 50 (5), 1712-1720.
https://doi.org/10.1039/D0DT04074F
[16]. Wozniak, D. I.; Hicks, A. J.; Sabbers, W. A.; Dobereiner, G. E. Dalton Trans. 2019, 48 (37), 14138-14155.
https://doi.org/10.1039/C9DT03511G
[17]. Kang, C.; Zhang, Z.; Wee, V.; Usadi, A. K.; Calabro, D. C.; Baugh, L. S.; Wang, S.; Wang, Y.; Zhao, D. J. Am. Chem. Soc. 2020, 142 (30), 12995-13002.
https://doi.org/10.1021/jacs.0c03691
[18]. Dionne, E. R.; Dip, C.; Toader, V.; Badia, A. J. Am. Chem. Soc. 2018, 140 (32), 10063-10066.
https://doi.org/10.1021/jacs.8b04054
[19]. Tian, X.; Xin, X.; Gao, Y.; Han, Z. CrystEngComm 2018, 20 (11), 1588-1596.
https://doi.org/10.1039/C8CE00026C
[20]. Gargallo, R.; Aviñó, A.; Eritja, R.; Jarosova, P.; Mazzini, S.; Scaglioni, L.; Taborsky, P. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248 (119185), 119185.
https://doi.org/10.1016/j.saa.2020.119185
[21]. Gomez-Jeria, J. S.; Robles-Navarro, A.; Kpotin, G. A.; Garro-Saez, N.; Gatica-Diaz, N. Chem. Res. J. 2020, 5 (2), 32-52. https://chemrj.org/download/vol-5-iss-2-2020/chemrj-2020-05-02-32-52.pdf (accessed Apr 17, 2021).
[22]. Hahn, R.; Bohle, F.; Fang, W.; Walther, A.; Grimme, S.; Esser, B. J. Am. Chem. Soc. 2018, 140 (51), 17932-17944.
https://doi.org/10.1021/jacs.8b08823
[23]. Zuniga, M. A.; Alderete, J. B.; Jaña, G. A.; Jiménez, V. A. J. Comput. Aided Mol. Des. 2017, 31 (7), 643-652.
https://doi.org/10.1007/s10822-017-0029-2
[24]. Avdeeva, V. V.; Vologzhanina, A. V.; Ugolkova, E. A.; Minin, V. V.; Malinina, E. A.; Kuznetsov, N. T. J. Solid State Chem. 2021, 296 (121989), 121989.
https://doi.org/10.1016/j.jssc.2021.121989
[25]. Kikkawa, S.; Okayasu, M.; Hikawa, H.; Azumaya, I. Cryst. Growth Des. 2021, 21 (2), 1148-1158.
https://doi.org/10.1021/acs.cgd.0c01469
[26]. Kataeva, O.; Nohr, M.; Ivshin, K.; Hampel, S.; Büchner, B.; Knupfer, M. Cryst. Growth Des. 2021, 21 (1), 471-481.
https://doi.org/10.1021/acs.cgd.0c01287
[27]. Awwadi, F. F.; Taher, D.; Kailani, M. H.; Alwahsh, M. I.; Odeh, F.; Rüffer, T.; Schaarschmidt, D.; Lang, H. Cryst. Growth Des. 2020, 20 (2), 543-551.
https://doi.org/10.1021/acs.cgd.9b00408
[28]. Zeng, C.-H.; Wu, H.; Luo, Z.; Yao, J. CrystEngComm 2018, 20 (8), 1123-1129.
https://doi.org/10.1039/C7CE02098H
[29]. Steiner, T.; Desiraju, G. R. Chem. Commun. (Camb.) 1998, No. 8, 891-892.
https://doi.org/10.1039/a708099i
[30]. Desiraju, G. R. Chem. Commun. (Camb.) 2005, No. 24, 2995-3001.
https://doi.org/10.1039/b504372g
[31]. Okamoto, A.; Yonezawa, N. J. Synth. Org. Chem. Japan 2015, 73 (4), 339-360.
https://doi.org/10.5059/yukigoseikyokaishi.73.339
[32]. Okamoto, A.; Yonezawa, N. Chem. Lett. 2009, 38 (9), 914-915.
https://doi.org/10.1246/cl.2009.914
[33]. Okamoto, A.; Mitsui, R.; Oike, H.; Yonezawa, N. Chem. Lett. 2011, 40 (11), 1283-1284.
https://doi.org/10.1246/cl.2011.1283
[34]. Okamoto, A.; Mitsui, R.; Watanabe, S.; Tsubouchi, T.; Yonezawa, N. Int. J. Org. Chem. (Irvine) 2012, 02 (03), 194-201.
https://doi.org/10.4236/ijoc.2012.23029
[35]. Ogata, K.; Mido, T.; Siqingaowa; Noguchi, K.; Yonezawa, N.; Okamoto, A. Chem. Lett. 2019, 48 (12), 1522-1525.
https://doi.org/10.1246/cl.190663
[36]. Mido, T.; Iitsuka, H.; Kobayashi, M.; Noguchi, K.; Yonezawa, N.; Okamoto, A. Chem. Lett. 2020, 49 (3), 295-298.
https://doi.org/10.1246/cl.190903
[37]. Nakaema, K.; Watanabe, S.; Okamoto, A.; Noguchi, K.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64 (Pt 5), o807.
https://doi.org/10.1107/S1600536808007009
[38]. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition; Reed Educational and Professional Publishing Ltd: Oxford, 1996.
[39]. Domasevitch, K. V.; Solntsev, P. V.; Krautscheid, H.; Zhylenko, I. S.; Rusanov, E. B.; Chernega, A. N. Chem. Commun. (Camb.) 2012, 48 (47), 5847-5849.
https://doi.org/10.1039/c2cc31770b
[40]. Kato, Y.; Nagasawa, A.; Hijikata, D.; Okamoto, A.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66 (10), o2659-o2659.
https://doi.org/10.1107/S1600536810038195
[41]. Nagasawa, A.; Mitsui, R.; Kato, Y.; Okamoto, A.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66 (10), o2677-o2677.
https://doi.org/10.1107/S1600536810038547
[42]. Rigaku. PROCESS‐AUTO. Rigaku Corporation, Tokyo, Japan, 1998.
[43]. Rigaku. CrystalStructure. Rigaku Corporation, Tokyo, Japan, 2010.
[44]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Crystallogr. 2007, 40 (3), 609-613.
https://doi.org/10.1107/S0021889807010941
[45]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.12.2.147-153.2114

















European Journal of Chemistry 2021, 12(2), 147-153 | doi: https://doi.org/10.5155/eurjchem.12.2.147-153.2114 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.