European Journal of Chemistry 2021, 12(2), 147-153 | doi: https://doi.org/10.5155/eurjchem.12.2.147-153.2114 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds


Kikuko Iida (1) orcid , Rei Sakamoto (2) orcid , Kun Li (3) orcid , Miyuki Kobayashi (4) orcid , Hiroaki Iitsuka (5) orcid , Noriyuki Yonezawa (6) orcid , Akiko Okamoto (7,*) orcid

(1) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(2) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(3) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(4) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(5) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(6) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(7) Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588, Japan
(*) Corresponding Author

Received: 01 Mar 2021 | Revised: 16 Apr 2021 | Accepted: 17 Apr 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


The title compound lies about a crystallographic inversion centre located at the terephthalate moiety. The two peri-benzoylnaphthalene units having atrope chirality are also situated centrosymmetrically. In the two peri-benzoylnaphthalene moieties, two benzoyl groups are substituted at 1 and 8 carbons of the naphthalene ring in anti-orientation. Then two absolute configurations of peri-benzoylnaphthalene moieties are consequently assigned as complementary to each other, i.e., one unit has R,R-configuration and the other S,S-one, respectively. The two benzoyl groups in peri-benzoylnaphthalene moiety and the terephthalate phenylene ring are non-coplanarly located against the naphthalene ring. The dihedral angles of each benzene ring of two benzoyl groups and terephthalate unit with the naphthalene ring are 73.73 and 75.96, and 71.79°. In molecular packing, several kinds of weak interactions are responsible to induce three-dimensional molecular network. Especially, the synergetic effect realized through the bidentate hydrogen acceptor function in bidirectional C-H···π non-classical hydrogen bonds by the terephthalate phenylene ring moiety plausibly plays the determining role.


Keywords


Aggregation; Weak interactions; Conformation analysis; Aromatic ring structure; Bidentate hydrogen acceptor; Bidirectional C-H···π interactions

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.147-153.2114

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 92 times | icon graph PDF Article downloaded 32 times

Funding information


Tokyo Ohka Foundation for The Promotion of Science and Technology and JSPS KAKENHI Grant No. JP20K05473, Japan

References


[1]. Desiraju, G. R. Acc. Chem. Res. 1991, 24 (10), 290-296.
https://doi.org/10.1021/ar00010a002

[2]. Desiraju, G. R. Acc. Chem. Res. 1996, 29 (9), 441-449.
https://doi.org/10.1021/ar950135n

[3]. Steiner, T. Chem. Commun. (Camb.) 1997, No. 8, 727-734.
https://doi.org/10.1039/a603049a

[4]. Dang, L.-L.; Feng, H.-J.; Lin, Y.-J.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142 (44), 18946-18954.
https://doi.org/10.1021/jacs.0c09162

[5]. Gao, Y.; Yin, Q.; Wang, Q.; Li, Z.; Cai, J.; Zhao, T.; Lei, H.; Wang, S.; Zhang, Y.; Shen, B. Adv. Mater. 2020, 32 (48), e2005228.
https://doi.org/10.1002/adma.202005228

[6]. Desiraju, G. R. J. Mol. Struct. 2003, 656 (1-3), 5-15.
https://doi.org/10.1016/S0022-2860(03)00354-5

[7]. Desiraju, G. R. Cryst. Growth Des. 2011, 11 (4), 896-898.
https://doi.org/10.1021/cg200100m

[8]. Aakeröy, C. B.; Seddon, K. R. Chem. Soc. Rev. 1993, 22 (6), 397-407.
https://doi.org/10.1039/CS9932200397

[9]. Desiraju, G. R. C. E. The Design of Organic Solids; Elsevier: Amsterdam, 1989.

[10]. Desiraju, G. R. Angew. Chem. Int. Ed. Engl. 1995, 34 (21), 2311-2327.
https://doi.org/10.1002/anie.199523111

[11]. Hisaki, I.; Nakagawa, S.; Ikenaka, N.; Imamura, Y.; Katouda, M.; Tashiro, M.; Tsuchida, H.; Ogoshi, T.; Sato, H.; Tohnai, N.; Miyata, M. J. Am. Chem. Soc. 2016, 138 (20), 6617-6628.
https://doi.org/10.1021/jacs.6b02968

[12]. Sasaki, T.; Ida, Y.; Hisaki, I.; Tsuzuki, S.; Tohnai, N.; Coquerel, G.; Sato, H.; Miyata, M. Cryst. Growth Des. 2016, 16 (3), 1626-1635.
https://doi.org/10.1021/acs.cgd.5b01724

[13]. Budiman, Y. P.; Jayaraman, A.; Friedrich, A.; Kerner, F.; Radius, U.; Marder, T. B. J. Am. Chem. Soc. 2020, 142 (13), 6036-6050.
https://doi.org/10.1021/jacs.9b11871

[14]. Bondue, C. J.; Koper, M. T. M. J. Am. Chem. Soc. 2019, 141 (30), 12071-12078.
https://doi.org/10.1021/jacs.9b05397

[15]. Elsberg, J. G. D.; Anderson, S. N.; Tierney, D. L.; Reinheimer, E. W.; Berreau, L. M. Dalton Trans. 2021, 50 (5), 1712-1720.
https://doi.org/10.1039/D0DT04074F

[16]. Wozniak, D. I.; Hicks, A. J.; Sabbers, W. A.; Dobereiner, G. E. Dalton Trans. 2019, 48 (37), 14138-14155.
https://doi.org/10.1039/C9DT03511G

[17]. Kang, C.; Zhang, Z.; Wee, V.; Usadi, A. K.; Calabro, D. C.; Baugh, L. S.; Wang, S.; Wang, Y.; Zhao, D. J. Am. Chem. Soc. 2020, 142 (30), 12995-13002.
https://doi.org/10.1021/jacs.0c03691

[18]. Dionne, E. R.; Dip, C.; Toader, V.; Badia, A. J. Am. Chem. Soc. 2018, 140 (32), 10063-10066.
https://doi.org/10.1021/jacs.8b04054

[19]. Tian, X.; Xin, X.; Gao, Y.; Han, Z. CrystEngComm 2018, 20 (11), 1588-1596.
https://doi.org/10.1039/C8CE00026C

[20]. Gargallo, R.; Aviñó, A.; Eritja, R.; Jarosova, P.; Mazzini, S.; Scaglioni, L.; Taborsky, P. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248 (119185), 119185.
https://doi.org/10.1016/j.saa.2020.119185

[21]. Gomez-Jeria, J. S.; Robles-Navarro, A.; Kpotin, G. A.; Garro-Saez, N.; Gatica-Diaz, N. Chem. Res. J. 2020, 5 (2), 32-52. https://chemrj.org/download/vol-5-iss-2-2020/chemrj-2020-05-02-32-52.pdf (accessed Apr 17, 2021).

[22]. Hahn, R.; Bohle, F.; Fang, W.; Walther, A.; Grimme, S.; Esser, B. J. Am. Chem. Soc. 2018, 140 (51), 17932-17944.
https://doi.org/10.1021/jacs.8b08823

[23]. Zuniga, M. A.; Alderete, J. B.; Jaña, G. A.; Jiménez, V. A. J. Comput. Aided Mol. Des. 2017, 31 (7), 643-652.
https://doi.org/10.1007/s10822-017-0029-2

[24]. Avdeeva, V. V.; Vologzhanina, A. V.; Ugolkova, E. A.; Minin, V. V.; Malinina, E. A.; Kuznetsov, N. T. J. Solid State Chem. 2021, 296 (121989), 121989.
https://doi.org/10.1016/j.jssc.2021.121989

[25]. Kikkawa, S.; Okayasu, M.; Hikawa, H.; Azumaya, I. Cryst. Growth Des. 2021, 21 (2), 1148-1158.
https://doi.org/10.1021/acs.cgd.0c01469

[26]. Kataeva, O.; Nohr, M.; Ivshin, K.; Hampel, S.; Büchner, B.; Knupfer, M. Cryst. Growth Des. 2021, 21 (1), 471-481.
https://doi.org/10.1021/acs.cgd.0c01287

[27]. Awwadi, F. F.; Taher, D.; Kailani, M. H.; Alwahsh, M. I.; Odeh, F.; Rüffer, T.; Schaarschmidt, D.; Lang, H. Cryst. Growth Des. 2020, 20 (2), 543-551.
https://doi.org/10.1021/acs.cgd.9b00408

[28]. Zeng, C.-H.; Wu, H.; Luo, Z.; Yao, J. CrystEngComm 2018, 20 (8), 1123-1129.
https://doi.org/10.1039/C7CE02098H

[29]. Steiner, T.; Desiraju, G. R. Chem. Commun. (Camb.) 1998, No. 8, 891-892.
https://doi.org/10.1039/a708099i

[30]. Desiraju, G. R. Chem. Commun. (Camb.) 2005, No. 24, 2995-3001.
https://doi.org/10.1039/b504372g

[31]. Okamoto, A.; Yonezawa, N. J. Synth. Org. Chem. Japan 2015, 73 (4), 339-360.
https://doi.org/10.5059/yukigoseikyokaishi.73.339

[32]. Okamoto, A.; Yonezawa, N. Chem. Lett. 2009, 38 (9), 914-915.
https://doi.org/10.1246/cl.2009.914

[33]. Okamoto, A.; Mitsui, R.; Oike, H.; Yonezawa, N. Chem. Lett. 2011, 40 (11), 1283-1284.
https://doi.org/10.1246/cl.2011.1283

[34]. Okamoto, A.; Mitsui, R.; Watanabe, S.; Tsubouchi, T.; Yonezawa, N. Int. J. Org. Chem. (Irvine) 2012, 02 (03), 194-201.
https://doi.org/10.4236/ijoc.2012.23029

[35]. Ogata, K.; Mido, T.; Siqingaowa; Noguchi, K.; Yonezawa, N.; Okamoto, A. Chem. Lett. 2019, 48 (12), 1522-1525.
https://doi.org/10.1246/cl.190663

[36]. Mido, T.; Iitsuka, H.; Kobayashi, M.; Noguchi, K.; Yonezawa, N.; Okamoto, A. Chem. Lett. 2020, 49 (3), 295-298.
https://doi.org/10.1246/cl.190903

[37]. Nakaema, K.; Watanabe, S.; Okamoto, A.; Noguchi, K.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64 (Pt 5), o807.
https://doi.org/10.1107/S1600536808007009

[38]. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition; Reed Educational and Professional Publishing Ltd: Oxford, 1996.

[39]. Domasevitch, K. V.; Solntsev, P. V.; Krautscheid, H.; Zhylenko, I. S.; Rusanov, E. B.; Chernega, A. N. Chem. Commun. (Camb.) 2012, 48 (47), 5847-5849.
https://doi.org/10.1039/c2cc31770b

[40]. Kato, Y.; Nagasawa, A.; Hijikata, D.; Okamoto, A.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66 (10), o2659-o2659.
https://doi.org/10.1107/S1600536810038195

[41]. Nagasawa, A.; Mitsui, R.; Kato, Y.; Okamoto, A.; Yonezawa, N. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66 (10), o2677-o2677.
https://doi.org/10.1107/S1600536810038547

[42]. Rigaku. PROCESS‐AUTO. Rigaku Corporation, Tokyo, Japan, 1998.

[43]. Rigaku. CrystalStructure. Rigaku Corporation, Tokyo, Japan, 2010.

[44]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Crystallogr. 2007, 40 (3), 609-613.
https://doi.org/10.1107/S0021889807010941

[45]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3-8.
https://doi.org/10.1107/S2053229614024218


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Iida, K.; Sakamoto, R.; Li, K.; Kobayashi, M.; Iitsuka, H.; Yonezawa, N.; Okamoto, A. Eur. J. Chem. 2021, 12(2), 147-153. doi:10.5155/eurjchem.12.2.147-153.2114
Iida, K.; Sakamoto, R.; Li, K.; Kobayashi, M.; Iitsuka, H.; Yonezawa, N.; Okamoto, A. Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds. Eur. J. Chem. 2021, 12(2), 147-153. doi:10.5155/eurjchem.12.2.147-153.2114
Iida, K., Sakamoto, R., Li, K., Kobayashi, M., Iitsuka, H., Yonezawa, N., & Okamoto, A. (2021). Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds. European Journal of Chemistry, 12(2), 147-153. doi:10.5155/eurjchem.12.2.147-153.2114
Iida, Kikuko, Rei Sakamoto, Kun Li, Miyuki Kobayashi, Hiroaki Iitsuka, Noriyuki Yonezawa, & Akiko Okamoto. "Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds." European Journal of Chemistry [Online], 12.2 (2021): 147-153. Web. 25 Jul. 2021
Iida, Kikuko, Sakamoto, Rei, Li, Kun, Kobayashi, Miyuki, Iitsuka, Hiroaki, Yonezawa, Noriyuki, AND Okamoto, Akiko. "Crystal structure of bis(1,8-dibenzoyl-7-methoxynaphthalen-2-yl)terephthalate: Terephthalate phenylene moiety acts as bidentate hydrogen acceptor of bidirectional C-H···π non-classical hydrogen bonds" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.147-153.2114

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 147-153 | doi: https://doi.org/10.5155/eurjchem.12.2.147-153.2114 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.