

Determination of optimal adsorption-desorption conditions for selective removal of Ni(II) from petrochemical samples using ion imprinted nanosorbent
Azizallah Nezhadali (1,*)



(1) Department of Chemistry, Payame Noor University, 91735-433, Mashhad, Iran
(2) Department of Chemistry, Payame Noor University, 91735-433, Mashhad, Iran
(3) Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
(*) Corresponding Author
Received: 31 Jan 2018 | Revised: 04 Mar 2018 | Accepted: 05 Mar 2018 | Published: 31 Mar 2018 | Issue Date: March 2018
Abstract
Nanoporous particles Ni(II) ion imprinted polymer (IIP), and non-imprinted polymer (NIP) in the absence of Ni(II) ion, with 18-70 nm dimensions were synthesized, and characterized by Fourier transform infrared, energy dispersive X-ray and nuclear magnetic resonance spectroscopic methods. Then, the surface area, pore size and structural composition of the products were characterized by Brunauer-Emmett-Teller and scanning electron microscope methods. Then, modified electrodes by the IIP for Ni(II) sensing and determination, were constructed and their catalytic activity were investigated by cyclic voltammetric method. Some parameters like desorption solvent, amount of sorbent, pH and contact time were optimized, and the measurements were all conducted under optimal conditions. The optimum pH for maximum sorption was obtained 7.8. In the optimum conditions, the maximum sorbent capacity of the IIP was obtained 371.9 µM/g. The limit of detection and relative standard deviation (n = 5) were obtained 1.3 ng/mLand 1.47%, respectively. The pre-concentration procedure revealed a linear curve within the concentration range of 10-6000 ng/mL and a good linearity with squared correlation coefficient of r2 0.9991 was achieved. The method was applied successfully for determination of Ni(II) ion in petrochemical samples.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.9.1.57-62.1685
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Payame Noor University and Kharazmi Technology Development of Iran, Iran
Citations
[1]. Liangqun Chen, Hongbing Liang, Jun Xing
Synthesis of multidentate functional monomer for ion imprinting
Journal of Separation Science 43(7), 1356, 2020
DOI: 10.1002/jssc.201901063

[2]. Fariba Masoumi, Parvin Sarabadani, Afshin Rajabi Khorrami
Synthesis, characterization and application of a new nano-structured samarium(III) ion-imprinted polymer
Polymer Bulletin 76(11), 5499, 2019
DOI: 10.1007/s00289-018-02672-0

References
[1]. Panahi, A. H.; Zadeh, S. M.; Tavangari, S. Iran. J. Chem. Chem. Eng. 2012, 31, 35-44.
[2]. Israel, A. U.; Obot, I. B.; Umoren, S. A.; Mkpenie, V. Ebong, G. A. Chem. 2008, 5, 74-80.
[3]. Uzoekwe, S. A.; Oghosanine, F. A. Environ. Stud. Manage. 2011, 4, 107-116.
[4]. Booth, E.; Strickland, J. D. H. Am. Chem. Soc. 1953, 75, 3017-3019.
https://doi.org/10.1021/ja01108a504
[5]. Yonezawa, C.; Sagawa, T.; Hoshi, M.; Tachikawa, E. Radioanal. Chem. 1983, 78, 7-14.
https://doi.org/10.1007/BF02519744
[6]. Gazda, D. B.; Fritz, J. S.; Porter, M. D. Anal. Chim. Acta 2004, 508, 53-59.
https://doi.org/10.1016/j.aca.2003.11.044
[7]. Ali, A.; Ye, Y.; Xu, G.; Yin, X.; Zhang, T. Microchem. 1999, 63, 365-373.
https://doi.org/10.1006/mchj.1999.1799
[8]. Sabermahani, F.; Taher, M. A. Microchim. Acta 2007, 159, 117-123.
https://doi.org/10.1007/s00604-006-0729-0
[9]. Tuzen, M.; Saygi, K. O.; Soylak, M. J. Hazard. Mater. 2008, 152, 632-639.
https://doi.org/10.1016/j.jhazmat.2007.07.026
[10]. Koesmawatig, T. A.; Moelyo, M.; Rizqiani, A.; Tanuwidjaja, S. Earth. Environ. Sci. 2017, 60, 1-6.
[11]. Godlewska-Zylkiewicz, B.; Malejko, J.; Halaburda, P.; Lesniewska, B.; Kojlo, A. Microchem. J. 2007, 85, 314-320.
https://doi.org/10.1016/j.microc.2006.07.008
[12]. Jackson, L. S.; Spence, J.; Janssen, D. J.; Ross, A. R. S.; Cullen, J. T. J. Anal. Spectro. 2018, 33, 304-313.
https://doi.org/10.1039/C7JA00237H
[13]. Rajesh, N.; Deepthi, B.; Subramaniam, A. J. Hazard. Mater. 2006, 144, 464-469.
https://doi.org/10.1016/j.jhazmat.2006.10.059
[14]. Habila, A. M.; Othman, Z.; Yilmaz, E.; Soylak, M. J. Environ. Anal. Chem. 2018, 98, 171-181.
https://doi.org/10.1080/03067319.2018.1430794
[15]. Afkhami, A.; Moradi, M.; Bahiraei, A.; Madrakian, T. Anal. Bioanal. Chem. Res. 2018, 5, 41-53.
[16]. Garcia, R.; Pinel, C.; Madic, C.; Lemaire, M. Tetrahedron Lett. 1998, 39, 8651-8654.
https://doi.org/10.1016/S0040-4039(98)01970-4
[17]. Nishide, H.; Tsuchida, E. Makromol. Chem. 1976, 177, 2295-2310.
https://doi.org/10.1002/macp.1976.021770807
[18]. Shamsipur, M.; Besharati-Seidani, A.; Fasihi, J.; Sharghi, H. Talanta 2010, 83, 674-681.
https://doi.org/10.1016/j.talanta.2010.10.021
[19]. Arbab-Zavar, M. H.; Chamsaz, M.; Zohuri, G.; Darroudi, A. J. Hazard. Mater. 2011, 185, 38-43.
https://doi.org/10.1016/j.jhazmat.2010.08.093
[20]. Ebrahimzadeh, H.; Moazzen, E.; Amini, M. M.; Sadeghi, O. Anal. Methods 2012, 4, 3232-3237.
https://doi.org/10.1039/c2ay25407g
[21]. Ahmadi, E.; Gatabi, J.; Mohamadnia, Z. Polimeros 2016, 26, 242-248.
https://doi.org/10.1590/0104-1428.2322
[22]. Omidi, F.; Behbahani, M.; Sadeghi Abandansar, H.; Sedighi, A.; Shahtaheri, S. J. J. Environ. Health Sci. Eng. 2014, 12, 137-141.
https://doi.org/10.1186/s40201-014-0137-z
[23]. Alahi, M. E. E.; Mukhopad, S. C.; Burkitt, L Sens. Actuators B 2018, 259, 753-761.
https://doi.org/10.1016/j.snb.2017.12.104
[24]. Bai, H.; Xiong, C.; Wang, C.; Liu, P.; Dong, S.; Cao, Q. J. Nanosci. Nanotechnol. 2018, 18, 3577-3584.
https://doi.org/10.1166/jnn.2018.14667
[25]. Alizadeh, T.; Atayi, K. J. Mol. Recognit. 2018, 31, 1-9.
https://doi.org/10.1002/jmr.2678
[26]. Behbahani, M.; Taghizadeh, M.; Bagheri, A.; Hosseini, H.; Salarnian, M.; Tootoonchi, A. Microchim. Acta 2012, 178, 429-437.
https://doi.org/10.1007/s00604-012-0846-x
[27]. Sarabadani, P.; Sadeghi, M.; Payehghadr, M.; Eshaghi, Z. Anal. Met. 2014, 6, 741-749.
https://doi.org/10.1039/C3AY41611A
[28]. Nourifard, F.; Payehghadr, M.; Kalhor, M.; Nejadali. A. Electroanalysis 2015, 27, 1-8.
[29]. Yang, J.; Dukjoon, K. Ind. Eng. Chem. Res. 2014, 53, 13340-13347.
https://doi.org/10.1021/ie500887b
[30]. Romani, J. O.; Pineiro, A. M.; Barrera, P. B.; Esteban, A. M. Talanta 2009, 79, 723-729.
https://doi.org/10.1016/j.talanta.2009.04.066
[31]. Romani, J. O.; Pineiro, A. M.; Barrera, P. B.; Esteban, A. M. Microchem. 2009, 93, 225-231.
https://doi.org/10.1016/j.microc.2009.07.011
[32]. Sousa, C. S. D.; Korn, M. Anal. Chim. Acta 2001, 444, 309-315.
https://doi.org/10.1016/S0003-2670(01)01207-7
[33]. Jiang, N.; Chang, X.; Zheng, H.; He, Q.; Hu, Z. Anal. Chim. Acta 2006, 577, 225-231.
https://doi.org/10.1016/j.aca.2006.06.049
[34]. Saraji, M.; Yousefi, H. J. Hazard. Mater. 2009, 167, 1152-1157.
https://doi.org/10.1016/j.jhazmat.2009.01.111
[35]. Yavuz, O.; Altunkaynak, Y.; Guzel, F. Water Res. 2003, 37, 948-952.
https://doi.org/10.1016/S0043-1354(02)00409-8
[36]. Otero-Romani, J.; Moreda-Pineiro, A.; Bermejo-Barrera, P.; Martin-Esteban, A. Anal. Chim. Acta 2008, 630, 1-9.
https://doi.org/10.1016/j.aca.2008.09.049
[37]. Ersoz, A.; Say, R.; Denizli, A. Anal. Chim. Acta 2004, 502, 91-97.
https://doi.org/10.1016/j.aca.2003.09.059
[38]. Xuejun, W.; Zhenliang, X.; Naici, B.; Zuoguo, Y. Chin. J. Chem. Eng. 2007, 15, 595-599.
https://doi.org/10.1016/S1004-9541(07)60130-X
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.9.1.57-62.1685

















European Journal of Chemistry 2018, 9(1), 57-62 | doi: https://doi.org/10.5155/eurjchem.9.1.57-62.1685 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.