European Journal of Chemistry

Influence of the physicochemical parameters of solvents in the extraction of bioactive compounds from Parinari macrophylla Sabine (Chrysobalanaceae)

Crossmark


Main Article Content

Mamadou Balde
Said Ennahar
Stephanie Dal
Severine Sigrist
Alassane Wele
Eric Marchioni
Diane Julien-David

Abstract

The extraction of bioactive compounds from medicinal plants requires methods which are as diverse as the chemical nature of the compounds themselves. In this study, a 96-well microplate was used where solvent mixtures spanning wide ranges of selectivity and polarity were tested with the objective of extracting a broad range bioactive compounds from plant material. Microplate wells were filled with plant material and the solvents and their mixtures were added. The obtained extracts were assessed in terms of their total antioxidant activity, oxygen radical absorbance capacity and effects on cell viability. An aqueous extract, generally used by traditional therapists, was also included in the study. The results showed that the extracts using methanol with acetic acid (0.1%, v:v), chloroform/ethanol, butanol/DMF, butanol/acetonitrile, ethylene glycol with acetic acid (0.1%, v:v), MTBE/DMSO, ethylene glycol, pentane/ethanol (v:v), ethanol, DMF, DMF with acetic acid (0.1%, v:v), DMSO, DMSO with acetic acid (0.1%, v:v) and THF had a higher antioxidant activity than the aqueous extract. Extracts with greater antioxidant activity than the aqueous extract were obtained largely from solvent mixtures with the exception of ethanol, DMF, DMSO and THF. The antioxidant activity obtained in TEAC varied between 1474.1±4.4 and 3183.0±16.0 μmol TE/g dry extract respectively for aqueous and THF extracts; in ORAC between 1727.7±8.4 and 2683.5±11.7 μmol TE/g dry extract for aqueous and DMSO acetic acid 1%, respectively, with mean ±SEM. In TEAC the THF extract had the highest antioxidant potential with 3183.0±16.0 μmol TE / g dry extract. The DMSO acetic acid (0.1%, v:v) extract had the highest antioxidant potential in ORAC with 2683.5±11.7 μmol TE / g dry extract. Cell viability test using β-pancreatic cells showed that only the acidified methanol extract was toxic after one hour of incubation. After 24 hours, cell viability was less than 70% for extracts using butanol/acetonitrile, MTBE/DMF, acidified methanol, pentane/ethanol and acidified DMF.


icon graph This Abstract was viewed 1581 times | icon graph Article PDF downloaded 587 times

How to Cite
(1)
Balde, M.; Ennahar, S.; Dal, S.; Sigrist, S.; Wele, A.; Marchioni, E.; Julien-David, D. Influence of the Physicochemical Parameters of Solvents in the Extraction of Bioactive Compounds from Parinari Macrophylla Sabine (Chrysobalanaceae). Eur. J. Chem. 2018, 9, 161-167.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Flores, G.; Wu, S. B.; Negrin, A.; Kennelly, E. J. Food Chem. 2015, 170, 327-335.
https://doi.org/10.1016/j.foodchem.2014.08.076

[2]. Gungor, S. S. U.; Ozay, S. G.; Ilcim, A.; Kokdil, G. Eur. J. Chem. 2013, 4(1), 7-9.
https://doi.org/10.5155/eurjchem.4.1.7-9.719

[3]. Taher, M. A. H.; Dawood, D. H.; Sanad, M. I.; Hassan, R. A. Eur. J. Chem. 2016, 7(4), 397-404.
https://doi.org/10.5155/eurjchem.7.4.397-404.1478

[4]. Sultana, B.; Anwar, F.; Ashraf, M. Molecules 2009, 14(6), 2167-2180.
https://doi.org/10.3390/molecules14062167

[5]. Hoon, L. Y.; Choo, C.; Watawana, M. I.; Jayawardena, N.; Waisundara, V. Y. J. Funct. Foods 2015, 18, 1014-1021.
https://doi.org/10.1016/j.jff.2014.07.009

[6]. Atta, E. M.; Hashem, A. I.; Ahmed, A. M.; Elqosy, S. M.; Jaspars, M.; El-Sharkaw, E. R. Eur. J. Chem. 2011, 2(4), 535-538.
https://doi.org/10.5155/eurjchem.2.4.535-538.62

[7]. Gramatica, P.; Navas, N.; Todeschini, R. TrAC Trends Anal. Chem. 1999, 18(7), 461-471.
https://doi.org/10.1016/S0165-9936(99)00115-6

[8]. Barwick, V. J. TrAC Trends Anal. Chem. 1997, 16(6), 293-309.
https://doi.org/10.1016/S0165-9936(97)00039-3

[9]. Fu, C.; Khaledi, M. G. J. Chromatogr. A 2009, 1216(10), 1891-1900.
https://doi.org/10.1016/j.chroma.2008.12.085

[10]. Lanty, P. de. Corps Gras Lipides 2005, 12(4), 299-301.
https://doi.org/10.1051/ocl.2005.0299

[11]. Johnson, A. R.; Vitha, M. F. J. Chromatogr. A 2011, 1218(4), 556-586.
https://doi.org/10.1016/j.chroma.2010.09.046

[12]. Salawu, S. O.; Akindahunsi, A. A.; Sanni, D. M.; Decorti, G.; Cvorovic, J.; Tramer, F.; Passamonti, S.; Mulinacci, N. Afr. J. Food Sci. 2011, 5(4), 267-275.

[13]. Wolfe, K. L.; Liu, R. H. J. Agric. Food Chem. 2007, 55(22), 8896-8907.
https://doi.org/10.1021/jf0715166

[14]. Chen, Y.; Wang, J.; Ou, Y.; Chen, H.; Xiao, S.; Liu, G.; Cao, Y.; Huang, Q. J. Funct. Foods 2014, 7, 737-745.
https://doi.org/10.1016/j.jff.2013.12.003

[15]. El-Rehem, F. A. E. -R. A. A.; Ali, R. F. M. Eur. J. Chem. 2013, 4(3), 185-190.
https://doi.org/10.5155/eurjchem.4.3.185-190.711

[16]. Miller, N. J.; Rice-Evans, C.; Davies, M. J.; Gopinathan, V.; Milner, A. Clin. Sci. Lond. Engl. 1993, 84(4), 407-412.
https://doi.org/10.1042/cs0840407

[17]. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic. Biol. Med. 1996, 20(7), 933-956.
https://doi.org/10.1016/0891-5849(95)02227-9

[18]. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Free Radic. Biol. Med. 1999, 26(9), 1231-1237.
https://doi.org/10.1016/S0891-5849(98)00315-3

[19]. Floegel, A.; Kim, D. O.; Chung, S. J.; Koo, S. I.; Chun, O. K. J. Food Compos. Anal. 2011, 24(7), 1043-1048.
https://doi.org/10.1016/j.jfca.2011.01.008

[20]. Zhao, P.; Duan, L.; Guo, L.; Dou, L.; Dong, X.; Zhou, P.; Li, P.; Liu, E. H. Food Chem. 2015, 173, 54-60.
https://doi.org/10.1016/j.foodchem.2014.10.010

[21]. Ramos, A. S.; Souza, R. O. S.; Boleti, A. P. de A.; Bruginski, E. R. D.; Lima, E. S.; Campos, F. R.; Machado, M. B. Food Res. Int. 2015, 75, 315-327.
https://doi.org/10.1016/j.foodres.2015.06.026

[22]. Leitao, C.; Marchioni, E.; Bergaentzlé, M.; Zhao, M.; Didierjean, L.; Miesch, L.; Holder, E.; Miesch, M.; Ennahar, S. J. Cereal Sci. 2012, 55(3), 318-322.
https://doi.org/10.1016/j.jcs.2012.01.002

[23]. Casettari, L.; Gennari, L.; Angelino, D.; Ninfali, P.; Castagnino, E. Food Hydrocoll. 2012, 28(2), 243-247.
https://doi.org/10.1016/j.foodhyd.2012.01.005

[24]. Cao, G.; Alessio, H. M.; Cutler, R. G. Free Radic. Biol. Med. 1993, 14(3), 303-311.
https://doi.org/10.1016/0891-5849(93)90027-R

[25]. Zulueta, A.; Esteve, M. J.; Frigola, A. Food Chem. 2009, 114(1), 310-316.
https://doi.org/10.1016/j.foodchem.2008.09.033

[26]. Samaniego Sanchez, C.; Troncoso Gonzalez, A. M.; Garcia-Parrilla, M. C.; Quesada Granados, J. J.; Lopez Garcia de la Serrana, H.; Lopez Martínez, M. C. Anal. Chim. Acta 2007, 593(1), 103-107.
https://doi.org/10.1016/j.aca.2007.04.037

[27]. Mohamadi, S.; Zhao, M.; Amrani, A.; Marchioni, E.; Zama, D.; Benayache, F.; Benayache, S. Ind. Crops Prod. 2015, 76, 910-919.
https://doi.org/10.1016/j.indcrop.2015.07.048

[28]. Jimenez, J. P.; Serrano, J.; Tabernero, M.; Arranz, S.; Diaz-Rubio, M. E.; Garcia-Diz, L.; Goni, I.; Saura-Calixto, F. Nutr. Burbank Los Angel. Cty. Calif. 2008, 24(7-8), 646-653.
https://doi.org/10.1016/j.nut.2008.03.012

[29]. Belhadj, S.; Hentati, O.; Hamdaoui, G.; Fakhreddine, K.; Maillard, E.; Dal, S.; Sigrist, S. Nutrients 2018, 10, 384, 1-17.

[30]. Auberval, N.; Dal, S.; Bietiger, W.; Seyfritz, E.; Peluso, J.; Muller, C. D.; Zhao, M.; Marchioni, E.; Pinget, M.; Jeandidier, N.; et al. Evid. Based Complement. Alternat. Med. 2015, 2015, 859048, 1-11.
https://doi.org/10.1155/2015/859048

[31]. Chavan, U. D.; Shahidi, F.; Naczk, M. Food Chem. 2001, 75(4), 509-512.
https://doi.org/10.1016/S0308-8146(01)00234-5

[32]. Turkmen, N.; Sari, F.; Velioglu, Y. Food Chem. 2006, 99, 835-841.
https://doi.org/10.1016/j.foodchem.2005.08.034

[33]. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y. H. J. Food Drug Anal. 2014, 22(3), 296-302.
https://doi.org/10.1016/j.jfda.2013.11.001

[34]. Boeing, J. S.; Barizao, E. O.; E Silva, B. C.; Montanher, P. F.; de Cinque Almeida, V.; Visentainer, J. V. Chem. Cent. J. 2014, 8(1), 48, 1-9.

[35]. Yu, J.; Ahmedna, M.; Goktepe, I. Food Chem. 2005, 90(1), 199-206.
https://doi.org/10.1016/j.foodchem.2004.03.048

[36]. Dutra, R. C.; Leite, M. N.; Barbosa, N. R. Int. J. Mol. Sci. 2008, 9(4), 606-614.
https://doi.org/10.3390/ijms9040606

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).