

Influence of the physicochemical parameters of solvents in the extraction of bioactive compounds from Parinari macrophylla Sabine (Chrysobalanaceae)
Mamadou Balde (1)







(1) Laboratory of Analytical Chemistry of Bio-Active Molecules and Pharmacognosy, Hubert Curien Multidisciplinary Institute, UMR 7178, University of Strasbourg, CNRS, 74, Route du Rhin, 67400 Illkirch-Graffenstaden, France
(2) Laboratory of Analytical Chemistry of Bio-Active Molecules and Pharmacognosy, Hubert Curien Multidisciplinary Institute, UMR 7178, University of Strasbourg, CNRS, 74, Route du Rhin, 67400 Illkirch-Graffenstaden, France
(3) UMR DIATHEC, EA 7294, Federation of Translational Medicine of Strasbourg (FMTS), University of Strasbourg, Rene Leriche Boulevard, 67200 Strasbourg, France
(4) UMR DIATHEC, EA 7294, Federation of Translational Medicine of Strasbourg (FMTS), University of Strasbourg, Rene Leriche Boulevard, 67200 Strasbourg, France
(5) Laboratory of Physical Chemistry, Mineral Chemistry, Organic Chemistry and Therapeutic Chemistry, Faculty of Medicine, Pharmacy and Odontology, Cheikh Anta Diop University (UCAD), BP 5005, Dakar, Senegal
(6) Laboratory of Analytical Chemistry of Bio-Active Molecules and Pharmacognosy, Hubert Curien Multidisciplinary Institute, UMR 7178, University of Strasbourg, CNRS, 74, Route du Rhin, 67400 Illkirch-Graffenstaden, France
(7) Laboratory of Analytical Chemistry of Bio-Active Molecules and Pharmacognosy, Hubert Curien Multidisciplinary Institute, UMR 7178, University of Strasbourg, CNRS, 74, Route du Rhin, 67400 Illkirch-Graffenstaden, France
(*) Corresponding Author
Received: 23 Apr 2018 | Revised: 31 May 2018 | Accepted: 02 Jun 2018 | Published: 30 Sep 2018 | Issue Date: September 2018
Abstract
The extraction of bioactive compounds from medicinal plants requires methods which are as diverse as the chemical nature of the compounds themselves. In this study, a 96-well microplate was used where solvent mixtures spanning wide ranges of selectivity and polarity were tested with the objective of extracting a broad range bioactive compounds from plant material. Microplate wells were filled with plant material and the solvents and their mixtures were added. The obtained extracts were assessed in terms of their total antioxidant activity, oxygen radical absorbance capacity and effects on cell viability. An aqueous extract, generally used by traditional therapists, was also included in the study. The results showed that the extracts using methanol with acetic acid (0.1%, v:v), chloroform/ethanol, butanol/DMF, butanol/acetonitrile, ethylene glycol with acetic acid (0.1%, v:v), MTBE/DMSO, ethylene glycol, pentane/ethanol (v:v), ethanol, DMF, DMF with acetic acid (0.1%, v:v), DMSO, DMSO with acetic acid (0.1%, v:v) and THF had a higher antioxidant activity than the aqueous extract. Extracts with greater antioxidant activity than the aqueous extract were obtained largely from solvent mixtures with the exception of ethanol, DMF, DMSO and THF. The antioxidant activity obtained in TEAC varied between 1474.1±4.4 and 3183.0±16.0 μmol TE/g dry extract respectively for aqueous and THF extracts; in ORAC between 1727.7±8.4 and 2683.5±11.7 μmol TE/g dry extract for aqueous and DMSO acetic acid 1%, respectively, with mean ±SEM. In TEAC the THF extract had the highest antioxidant potential with 3183.0±16.0 μmol TE / g dry extract. The DMSO acetic acid (0.1%, v:v) extract had the highest antioxidant potential in ORAC with 2683.5±11.7 μmol TE / g dry extract. Cell viability test using β-pancreatic cells showed that only the acidified methanol extract was toxic after one hour of incubation. After 24 hours, cell viability was less than 70% for extracts using butanol/acetonitrile, MTBE/DMF, acidified methanol, pentane/ethanol and acidified DMF.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.9.3.161-167.1723
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
Ministry of Higher Education and Research of Senegal, Cheikh Anta Diop University of Dakar; Strasbourg University, European Center for the Study of Diabetes.
References
[1]. Flores, G.; Wu, S. B.; Negrin, A.; Kennelly, E. J. Food Chem. 2015, 170, 327-335.
https://doi.org/10.1016/j.foodchem.2014.08.076
[2]. Gungor, S. S. U.; Ozay, S. G.; Ilcim, A.; Kokdil, G. Eur. J. Chem. 2013, 4(1), 7-9.
https://doi.org/10.5155/eurjchem.4.1.7-9.719
[3]. Taher, M. A. H.; Dawood, D. H.; Sanad, M. I.; Hassan, R. A. Eur. J. Chem. 2016, 7(4), 397-404.
https://doi.org/10.5155/eurjchem.7.4.397-404.1478
[4]. Sultana, B.; Anwar, F.; Ashraf, M. Molecules 2009, 14(6), 2167-2180.
https://doi.org/10.3390/molecules14062167
[5]. Hoon, L. Y.; Choo, C.; Watawana, M. I.; Jayawardena, N.; Waisundara, V. Y. J. Funct. Foods 2015, 18, 1014-1021.
https://doi.org/10.1016/j.jff.2014.07.009
[6]. Atta, E. M.; Hashem, A. I.; Ahmed, A. M.; Elqosy, S. M.; Jaspars, M.; El-Sharkaw, E. R. Eur. J. Chem. 2011, 2(4), 535-538.
https://doi.org/10.5155/eurjchem.2.4.535-538.62
[7]. Gramatica, P.; Navas, N.; Todeschini, R. TrAC Trends Anal. Chem. 1999, 18(7), 461-471.
https://doi.org/10.1016/S0165-9936(99)00115-6
[8]. Barwick, V. J. TrAC Trends Anal. Chem. 1997, 16(6), 293-309.
https://doi.org/10.1016/S0165-9936(97)00039-3
[9]. Fu, C.; Khaledi, M. G. J. Chromatogr. A 2009, 1216(10), 1891-1900.
https://doi.org/10.1016/j.chroma.2008.12.085
[10]. Lanty, P. de. Corps Gras Lipides 2005, 12(4), 299-301.
https://doi.org/10.1051/ocl.2005.0299
[11]. Johnson, A. R.; Vitha, M. F. J. Chromatogr. A 2011, 1218(4), 556-586.
https://doi.org/10.1016/j.chroma.2010.09.046
[12]. Salawu, S. O.; Akindahunsi, A. A.; Sanni, D. M.; Decorti, G.; Cvorovic, J.; Tramer, F.; Passamonti, S.; Mulinacci, N. Afr. J. Food Sci. 2011, 5(4), 267-275.
[13]. Wolfe, K. L.; Liu, R. H. J. Agric. Food Chem. 2007, 55(22), 8896-8907.
https://doi.org/10.1021/jf0715166
[14]. Chen, Y.; Wang, J.; Ou, Y.; Chen, H.; Xiao, S.; Liu, G.; Cao, Y.; Huang, Q. J. Funct. Foods 2014, 7, 737-745.
https://doi.org/10.1016/j.jff.2013.12.003
[15]. El-Rehem, F. A. E. -R. A. A.; Ali, R. F. M. Eur. J. Chem. 2013, 4(3), 185-190.
https://doi.org/10.5155/eurjchem.4.3.185-190.711
[16]. Miller, N. J.; Rice-Evans, C.; Davies, M. J.; Gopinathan, V.; Milner, A. Clin. Sci. Lond. Engl. 1993, 84(4), 407-412.
https://doi.org/10.1042/cs0840407
[17]. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic. Biol. Med. 1996, 20(7), 933-956.
https://doi.org/10.1016/0891-5849(95)02227-9
[18]. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Free Radic. Biol. Med. 1999, 26(9), 1231-1237.
https://doi.org/10.1016/S0891-5849(98)00315-3
[19]. Floegel, A.; Kim, D. O.; Chung, S. J.; Koo, S. I.; Chun, O. K. J. Food Compos. Anal. 2011, 24(7), 1043-1048.
https://doi.org/10.1016/j.jfca.2011.01.008
[20]. Zhao, P.; Duan, L.; Guo, L.; Dou, L.; Dong, X.; Zhou, P.; Li, P.; Liu, E. H. Food Chem. 2015, 173, 54-60.
https://doi.org/10.1016/j.foodchem.2014.10.010
[21]. Ramos, A. S.; Souza, R. O. S.; Boleti, A. P. de A.; Bruginski, E. R. D.; Lima, E. S.; Campos, F. R.; Machado, M. B. Food Res. Int. 2015, 75, 315-327.
https://doi.org/10.1016/j.foodres.2015.06.026
[22]. Leitao, C.; Marchioni, E.; Bergaentzlé, M.; Zhao, M.; Didierjean, L.; Miesch, L.; Holder, E.; Miesch, M.; Ennahar, S. J. Cereal Sci. 2012, 55(3), 318-322.
https://doi.org/10.1016/j.jcs.2012.01.002
[23]. Casettari, L.; Gennari, L.; Angelino, D.; Ninfali, P.; Castagnino, E. Food Hydrocoll. 2012, 28(2), 243-247.
https://doi.org/10.1016/j.foodhyd.2012.01.005
[24]. Cao, G.; Alessio, H. M.; Cutler, R. G. Free Radic. Biol. Med. 1993, 14(3), 303-311.
https://doi.org/10.1016/0891-5849(93)90027-R
[25]. Zulueta, A.; Esteve, M. J.; Frigola, A. Food Chem. 2009, 114(1), 310-316.
https://doi.org/10.1016/j.foodchem.2008.09.033
[26]. Samaniego Sanchez, C.; Troncoso Gonzalez, A. M.; Garcia-Parrilla, M. C.; Quesada Granados, J. J.; Lopez Garcia de la Serrana, H.; Lopez Martínez, M. C. Anal. Chim. Acta 2007, 593(1), 103-107.
https://doi.org/10.1016/j.aca.2007.04.037
[27]. Mohamadi, S.; Zhao, M.; Amrani, A.; Marchioni, E.; Zama, D.; Benayache, F.; Benayache, S. Ind. Crops Prod. 2015, 76, 910-919.
https://doi.org/10.1016/j.indcrop.2015.07.048
[28]. Jimenez, J. P.; Serrano, J.; Tabernero, M.; Arranz, S.; Diaz-Rubio, M. E.; Garcia-Diz, L.; Goni, I.; Saura-Calixto, F. Nutr. Burbank Los Angel. Cty. Calif. 2008, 24(7-8), 646-653.
https://doi.org/10.1016/j.nut.2008.03.012
[29]. Belhadj, S.; Hentati, O.; Hamdaoui, G.; Fakhreddine, K.; Maillard, E.; Dal, S.; Sigrist, S. Nutrients 2018, 10, 384, 1-17.
[30]. Auberval, N.; Dal, S.; Bietiger, W.; Seyfritz, E.; Peluso, J.; Muller, C. D.; Zhao, M.; Marchioni, E.; Pinget, M.; Jeandidier, N.; et al. Evid. Based Complement. Alternat. Med. 2015, 2015, 859048, 1-11.
https://doi.org/10.1155/2015/859048
[31]. Chavan, U. D.; Shahidi, F.; Naczk, M. Food Chem. 2001, 75(4), 509-512.
https://doi.org/10.1016/S0308-8146(01)00234-5
[32]. Turkmen, N.; Sari, F.; Velioglu, Y. Food Chem. 2006, 99, 835-841.
https://doi.org/10.1016/j.foodchem.2005.08.034
[33]. Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y. H. J. Food Drug Anal. 2014, 22(3), 296-302.
https://doi.org/10.1016/j.jfda.2013.11.001
[34]. Boeing, J. S.; Barizao, E. O.; E Silva, B. C.; Montanher, P. F.; de Cinque Almeida, V.; Visentainer, J. V. Chem. Cent. J. 2014, 8(1), 48, 1-9.
[35]. Yu, J.; Ahmedna, M.; Goktepe, I. Food Chem. 2005, 90(1), 199-206.
https://doi.org/10.1016/j.foodchem.2004.03.048
[36]. Dutra, R. C.; Leite, M. N.; Barbosa, N. R. Int. J. Mol. Sci. 2008, 9(4), 606-614.
https://doi.org/10.3390/ijms9040606
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.9.3.161-167.1723

















European Journal of Chemistry 2018, 9(3), 161-167 | doi: https://doi.org/10.5155/eurjchem.9.3.161-167.1723 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.