European Journal of Chemistry 2018, 9(4), 382-385 | doi: https://doi.org/10.5155/eurjchem.9.4.382-385.1781 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Theoretical calculation of the exchange coupling constant in some polymeric nickel(II) complexes using range-separated functionals


Mohamed Abdalla Makhyoun (1,*) orcid , Raghdaa Adel Massoud (2) orcid

(1) Chemistry Department, Faculty of Science, Alexandria University, 21525 Alexandria, Egypt
(2) Chemistry Department, Faculty of Science, Alexandria University, 21525 Alexandria, Egypt
(*) Corresponding Author

Received: 16 Aug 2018 | Revised: 28 Oct 2018 | Accepted: 29 Oct 2018 | Published: 31 Dec 2018 | Issue Date: December 2018

Abstract


The magnetic parameters (J, g) of two nickel(II) 1D polymers (Ni(en)(ox) and Ni(ox) (ampy)2; where en = ethylene diamine, ox = oxalate, ampy = 4-amino-pyridine) were calculated using 6-311+G* basis set and six range-separated DFT functionals (CAM-B3LYP, LC-BLYP, wB97, wB97X, wB97X-D3 and B2T-PLYP) together with the hybrid B3LYP method for sake of comparison. We found that the wB97, CAM-B3LYP and wB97X-D3 methods gave approximate value of J for compound 1 and the B2T-PLYP method was found to be the best method for compound 2. The g values were calculated by the coupled perturbed approach. However, we assume that a higher approximation is needed in order to give satisfactory results for g. A new equation has been proposed to relate the experimental susceptibility to the J and g parameters. The Curie-Weiss law was included in this equation resulting in a good explanation of the steep part of the experimental curve below 20 K.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Curie-Weiss law; DFT calculations; Coupling constant; Magnetic parameters; Magnetic susceptibility; Exchange correlation functional

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.9.4.382-385.1781

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 1139 times | icon graph PDF Article downloaded 455 times

Funding information


the Chemistry Department, Faculty of Science, Alexandria University, Egypt

Citations

/


[1]. Ilya N. Klyukin, Yulia S. Vlasova, Alexander S. Novikov, Andrey P. Zhdanov, Konstantin Y. Zhizhin, Nikolay T. Kuznetsov
Theoretical Study of closo-Borate Anions [BnHn]2− (n = 5–12): Bonding, Atomic Charges, and Reactivity Analysis
Symmetry  13(3), 464, 2021
DOI: 10.3390/sym13030464
/


References


[1]. Chun, J.; Lee, Y.; Pyo, S.; Im, C.; Kim, S.; Yun, H.; Do, J. Bull Korean Chem. Soc. 2009, 30, 1603-1606.

[2]. Meyer, A.; Gleizes, A.; Girerd, J.; Verdaguer, M.; Kahn, O. Inorg. Chem. 1982, 21, 1729-1739.
https://doi.org/10.1021/ic00135a006

[3]. Castillo, O.; Luque, A.; Roman, P.; Lloret, F.; Julve, M. Inorg. Chem. 2001, 40, 5526-5535.
https://doi.org/10.1021/ic0103401

[4]. Castillo, O.; Luque, A.; Sertucha, J.; Roman, P.; Lloret, F. Inorg. Chem. 2000, 39, 6142-6144.
https://doi.org/10.1021/ic000543+

[5]. Park, H. W.; Sung, S. M.; Min, K. S.; Bang, H.; Suh, M. P. Eur. J. Inorg. Chem. 2001, 2001, 2857-2863.

[6]. Masclocchl, N.; Gall, S.; Tagllabue, G.; Slronl, A.; Castle, O.; Luque, A.; Beoblde, G.; Wang, W.; Romero, M. A.; Barea, E.; Navarro, J. A. R. Inorg. Chem. 2009, 48, 3087-3094.
https://doi.org/10.1021/ic802365w

[7]. Fu-Qing, Z.; Jing-Jing, Z.; Qi-Mao, H.; Hong, Z.; Zhi-Quan, P. Chin. J. Struct. Chem. 2014, 33, 735-740.

[8]. Makhyoun, M. A.; Palmer, R. A.; Soayed, A. A.; Refaat, H. M.; Basher, D. E. J. Chem. Crystallogr. 2016, 46, 269-279.
https://doi.org/10.1007/s10870-016-0656-9

[9]. Yuan, N.; Tian, C.; Sheng, T.; Hu, S.; Wu, X. Cryst. Growth Des. 2018, 18, 2667-2671.
https://doi.org/10.1021/acs.cgd.7b01709

[10]. Hatfield, W. E.; Weller, R. R.; Hall, J. W. Inorg. Chem. 1980, 19, 3825-3828.
https://doi.org/10.1021/ic50214a047

[11]. Estes, W. E.; Weller, R. R.; Hatfield, W. E. Inorg. Chem. 1980, 19, 26-31.
https://doi.org/10.1021/ic50203a006

[12]. Massoud, R. A.; Lees-Gayed, N.; Makhyoun, M. A. Asian J. Chem. 2017, 29, 2739-2742.
https://doi.org/10.14233/ajchem.2017.20857

[13]. Orio, M.; Pantazis, D. A.; Petrenko, T.; Neese, F. Inorg. Chem. 2009, 48, 7251-7260.
https://doi.org/10.1021/ic9005899

[14]. Peralt, J. E.; Melo, J. I J. Chem. Theory Comput. 2010, 6, 1894-1899.
https://doi.org/10.1021/ct100104v

[15]. Rivero, P.; Iberio de, P. R.; Moreira, P. R.; Illas, F.; Scuseria, G. E. J. Chem. Phys. 2008, 129, 18110-18116

[16]. Andrienko, G. A. Chemcraft Molecular Visualization Program, Version 1. 8 (build 445). www.chemcraftprog.com

[17]. Yanai, T.; Tew, D.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011

[18]. Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Hirao, K. J. Chem. Phys. 2004, 120, 8425-8434.
https://doi.org/10.1063/1.1688752

[19]. Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
https://doi.org/10.1039/b810189b

[20]. Lin, Y. S.; Li, G. D.; Mao, S. P.; Chai, J. D. J. Chem. Theory Comput. 2013, 9, 263-272.
https://doi.org/10.1021/ct300715s

[21]. Tarnopolsky, A.; Sertchook, R.; Vuzman, D.; Martin, J. M. L. J. Phys. Chem. A 2008, 112, 3-8.
https://doi.org/10.1021/jp710179r

[22]. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5654.
https://doi.org/10.1063/1.464913

[23]. Neese, F. J. Phys. Chem. Solids 2004, 65, 781-785.
https://doi.org/10.1016/j.jpcs.2003.11.015

[24]. Neese, F.; Wenmohs, F. ORCA version 4.01 – An ab initio, DFT and Semiempirical SCF-MO Package.

[25]. Noodleman, L. J. Chem. Phys. 1981, 74, 5737-5743.
https://doi.org/10.1063/1.440939

[26]. Haldane, F. D. M. Phys. Rev. Lett. 1983, 50, 1153-1157.
https://doi.org/10.1103/PhysRevLett.50.1153

[27]. Brown, D. B.; Donner, J. A.; Hall, J. W.; Wilson, S. R.; Wilson, R. B.; Hodgson, D. J.; Hatfield, W. E. Inorg. Chem. 1979, 18, 2635-2641.
https://doi.org/10.1021/ic50200a001

[28]. Abu-Youssef, M. A. M.; Mautner, F. A.; Vicente, R. Inorg. Chem. 2007, 46, 4654-4659.
https://doi.org/10.1021/ic0622297

[29]. Nytko, E. A.; Shores, M. P.; Helton, J. S.; Nocera, D. G. Inorg. Chem. 2009, 48, 7782-7786.
https://doi.org/10.1021/ic900665j


How to cite


Makhyoun, M.; Massoud, R. Eur. J. Chem. 2018, 9(4), 382-385. doi:10.5155/eurjchem.9.4.382-385.1781
Makhyoun, M.; Massoud, R. Theoretical calculation of the exchange coupling constant in some polymeric nickel(II) complexes using range-separated functionals. Eur. J. Chem. 2018, 9(4), 382-385. doi:10.5155/eurjchem.9.4.382-385.1781
Makhyoun, M., & Massoud, R. (2018). Theoretical calculation of the exchange coupling constant in some polymeric nickel(II) complexes using range-separated functionals. European Journal of Chemistry, 9(4), 382-385. doi:10.5155/eurjchem.9.4.382-385.1781
Makhyoun, Mohamed, & Raghdaa Adel Massoud. "Theoretical calculation of the exchange coupling constant in some polymeric nickel(II) complexes using range-separated functionals." European Journal of Chemistry [Online], 9.4 (2018): 382-385. Web. 4 Jun. 2023
Makhyoun, Mohamed, AND Massoud, Raghdaa. "Theoretical calculation of the exchange coupling constant in some polymeric nickel(II) complexes using range-separated functionals" European Journal of Chemistry [Online], Volume 9 Number 4 (31 December 2018)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.9.4.382-385.1781


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2018, 9(4), 382-385 | doi: https://doi.org/10.5155/eurjchem.9.4.382-385.1781 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.