

Detailed analytical studies of 1,2,4-triazole derivatized quinoline
Shilpa Mallappa Somagond (1)







(1) Department of Chemistry, Karnatak University, Dharwad, Karnataka 580003, India
(2) Department of Physics, Karnatak University Dharwad, Karnataka 580003, India
(3) Department of Chemistry, Karnatak University, Dharwad, Karnataka 580003, India
(4) Department of Physics, Karnatak University Dharwad, Karnataka 580003, India
(5) Department of Science and Technology, PURSE Laboratory, Mangalore University, Mangalagangothri, Karnataka 574199, India
(6) Department of Chemistry, Mangalore University, Konaje, Mangalore, Karnataka 574199, India
(7) Department of Chemistry, Karnatak University, Dharwad, Karnataka 580003, India
(*) Corresponding Author
Received: 07 Mar 2019 | Revised: 25 Jul 2019 | Accepted: 30 Jul 2019 | Published: 31 Dec 2019 | Issue Date: December 2019
Abstract
The present study describes, the X-ray single crystal analysis of 4-((2-chloro-6-methoxyquinolin-3-yl)methyl)-2-phenyl-2H-1,2,4-triazol-3(4H)-one (TMQ). The crystal data for C19H15ClN4O2: monoclinic, space group P21/n (no. 14), a = 7.3314(15) Å, b = 12.459(3) Å, c = 18.948(4) Å, β = 98.322(9)°, V = 1712.5(6) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.245 mm-1, Dcalc = 1.423 g/cm3, 5082 reflections measured (3.926° ≤ 2Θ ≤ 38.556°), 1428 unique (Rint = 0.0545, Rsigma = 0.0574) which were used in all calculations. The final R1 was 0.0423 (I >2σ(I)) and wR2 was 0.1145 (all data). The Density functional theory optimized molecular geometries in TMQ agree closely with those obtained from crystallographic studies. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy levels and energy gap were calculated by experimental (UV absorption & Cyclic voltammetry) and theoretical studies in two different solvents. The natural bond orbital analysis was performed to understand the molecular interaction on the basis of stability of molecule arising from hyper-conjugative interaction and charge delocalization. Hirshfeld surface and their related fingerprint plots enabled the identification of significant intermolecular interaction. The molecular electrostatic potential analysis provides the visual image of the chemically active sites and comparable reaction of atoms.
Announcements
One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and June 16, 2023 (Voucher code: SPONSOR2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.10.4.281-294.1844
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
UGC UPE FAR-I “Antitumor activity: An Integrated Approach” vide F. No. 14-3/2012 (NS/PE), University Grants commission (UGC), New Delhi, India.
Citations
[1]. N.R. Sreenatha, A.S. Jeevan Chakravarthy, B.N. Lakshminarayana, S. Hariprasad
Structural characterization, computational, charge density studies of 2-chloro-3-(2’-methoxy)-5,5-dimethyl-2-cyclohexenone
Journal of Molecular Structure 1225, 129116, 2021
DOI: 10.1016/j.molstruc.2020.129116

[2]. Mohd. Suhail
A Computational and Literature-Based Evaluation for a Combination of Chiral Anti-CoV Drugs to Block and Eliminate SARS-CoV-2 Safely
Journal of Computational Biophysics and Chemistry 20(04), 417, 2021
DOI: 10.1142/S2737416521500228

[3]. Shilpa Mallappa Somagond, Ahmedraza Mavazzan, Suresh Fakkirappa Madar, Madivalagouda Sannaikar, Shankar Madan Kumar, Sanjeev Ramchandra Inamdar, Aravind Raviraj Nesaragi, Jagadeesh Prasad Dasappa, Ravindra Ramappa Kamble
X-ray diffraction and Density Functional Theory based structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-1,2,4-triazolone
European Journal of Chemistry 12(4), 459, 2021
DOI: 10.5155/eurjchem.12.4.459-468.2160

[4]. Mohammad Suhail, Sofi Danish Mukhtar, Imran Ali, Ariba Ansari, Saiyam Arora
Theoretical DFT study of Cannizzaro reaction mechanism: A mini perspective
European Journal of Chemistry 11(2), 139, 2020
DOI: 10.5155/eurjchem.11.2.139-144.1975

[5]. Neha Kumari, Ruchika Sharma, Archana Akaram Yadav, Sandeep Ashok Sankpal, Jayakumar Mohan Raj, Saminathan Murugavel, Rajni Kant
Synthesis, crystal structure, DFT/HF, Hirshfeld surface, and molecular docking analysis of 4-(tert-butyl)-4-nitro-1,1-biphenyl
European Journal of Chemistry 14(1), 90, 2023
DOI: 10.5155/eurjchem.14.1.90-98.2386

[6]. P. S. Jaget, P. K. Vishwakarma, M. K. Parte, R. C. Maurya
Synthesis, density functional theory, molecular docking and antioxidant studies of ruthenium(II) carbonyl complex of N-dehydroacetic acid-4-aminoantipyrene
Journal of Coordination Chemistry 75(9-10), 1256, 2022
DOI: 10.1080/00958972.2022.2098017

[7]. Mohd. Suhail
The Target Determination and the Mechanism of Action of Chiral-Antimalarial Drugs: A Docking Approach
Journal of Computational Biophysics and Chemistry 20(05), 501, 2021
DOI: 10.1142/S2737416521500290

References
[1]. Rastelli, E. J.; Truong, N. T.; Coltart, D. M. Org. Lett. 2016, 18, 5588-5591.
https://doi.org/10.1021/acs.orglett.6b02825
[2]. Kim, S. H.; Kaplan, J. A.; Sun, Y.; Shieh, A.; Sun, H. L.; Croce, C. M.; Parquette, J. R. Chem. Eur. J. 2015, 21, 101-105.
https://doi.org/10.1002/chem.201404520
[3]. Forkuo, A. D.; Ansah, C.; Boadu, K. M.; Boampong, J. N.; Ameyaw, E. O.; Gyan, B. A.; Ofori, M. F. Malar. J. 2016, 15, 1-12.
https://doi.org/10.1186/s12936-016-1223-8
[4]. Gaurav, A.; Singh, R. Med. Chem. Res. 2014, 23, 5008-5030.
https://doi.org/10.1007/s00044-014-1048-3
[5]. Lee, H. W.; Lee, H. S.; Park, J. H.; Cheong, J. J.; Kwon, H. B.; Kim, K. O.; Song, H. H. J. Appl. Biol. Chem. 2015, 58, 1-3 .
[6]. Wise, R.; Andrews, J. M.; Edwards, L. J. Antimicrob. Agents. Chemother. 1983, 23, 559-564.
https://doi.org/10.1128/AAC.23.4.559
[7]. Brown, C. E.; Mc Nulty, J.; Bordon, C.; Yolken, R.; Jones-Brando, L. Org. Biomol. Chem. 2016, 14, 5951-5955.
https://doi.org/10.1039/C6OB01083K
[8]. Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Curr. Med. Chem. 2010, 17, 1960-1973.
https://doi.org/10.2174/092986710791163966
[9]. Luo, Z. G.; Zeng, C. C.; Wang, F.; He, H. Q.; Wang, C. X.; Du, H. G.; Hu, L. M. Chem. Res. Chin. Univ. 2009, 25, 841-845.
[10]. Liu, H.; Dong, Y.; Zhang, B.; Liu, F.; Tan, C.; Tan, Y.; Jiang, Y. Sensors Sens. Actuator B-Chem. 2016, 234, 616-624.
https://doi.org/10.1016/j.snb.2016.04.175
[11]. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000, 122, 6769-6770.
https://doi.org/10.1021/ja0006292
[12]. El Ashry, E. S. H.; Awad, L. F.; Soliman, S. M.; Moaty, M. N. A. A.; Ghabbour, H. A.; Barakat, A. J. Mol. Struct. 2017, 1146, 432-440.
https://doi.org/10.1016/j.molstruc.2017.06.002
[13]. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057-6059.
https://doi.org/10.1016/j.bmcl.2004.09.072
[14]. El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.; Benhida, R. Bioorg. Med. Chem. Lett. 2007, 17, 6656-6659.
https://doi.org/10.1016/j.bmcl.2007.08.077
[15]. Karthikeyan, M. S.; Holla, B. S.; Kumari, N. S. Eur. J. Med. Chem. 2008, 43, 309-314.
https://doi.org/10.1016/j.ejmech.2007.03.024
[16]. Somagond, S. M.; Kamble R. R.; Kattimani, P. P.; Shaikh, S. J.; Dixit, S. R.; Joshi, S. D.; Devarajegowda, H. C. Chemistry Select 2018, 3, 2004-2016.
https://doi.org/10.1002/slct.201702279
[17]. Yang, F.; Zhang, X. L.; Sun, K.; Xiong, M. J.; Xia, P. F.; Cao, Z. J. Synth. Met. 2008, 158, 988-992.
https://doi.org/10.1016/j.synthmet.2008.06.028
[18]. Maiti, A.; Svizhenko, A.; Anantram, M. P. Phys. Rev. Lett. 2002, 88, 1268051-1268054.
https://doi.org/10.1103/PhysRevLett.88.126805
[19]. Zhou, D.; Ma, D.; Wang, Y.; Xianchun Liu; Xinhe Bao; Chem. Phys. Lett. 2003, 373, 46-51.
https://doi.org/10.1016/S0009-2614(03)00513-X
[20]. Leconte, J.; Markovits, A.; Skalli, M. K.; Minot, C.; Belmajdoub, A. Surf. Sci. 2002, 497, 194-204.
https://doi.org/10.1016/S0039-6028(01)01477-7
[21]. Wang, J.; Liu, C.; Fang, Z.; Liu, Y.; Han, Z.; J. Phys. Chem. B 2004, 108, 1653-1659.
https://doi.org/10.1021/jp035779o
[22]. Koch, W.; Holthausen, M. C. A.; Chemists Guide to Density Functional Theory, Wiley-VCH, Weinheim, New York, Chichester, 2000.
[23]. Parr, R. G.; Yang, W. T.; Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
[24]. Szafran, M.; Komasa, A.; Adamska, E. B. J. Mol. Struct. Theochem. 2007, 827, 101-107.
https://doi.org/10.1016/j.molstruc.2006.05.012
[25]. Rigaku, Crystal Clear SM Expert 2. 0 r15. Software for data collection and processing. Rigaku Corporation, Tokyo, Japan. 2011.
[26]. Sheldrick, G. M. Acta. Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930
[27]. Spek, A. L. Acta. Cryst. A 1990, 46, C34.
https://doi.org/10.1107/S0108270189012850
[28]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edging-ton, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van deStreek, J.; Wood, P. A. J. Appl. Crystallog. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908
[29]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S.; J. Acta. Crystallogr. B 2004, 60, 627-668.
https://doi.org/10.1107/S0108768104020300
[30]. Spackman, M. A.; Jayatilaka, D. Cryst. Engg. Comm. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A
[31]. Spackman, M. A.; McKinnon, J. J. Cryst. Eng. Comm. 2002, 4, 378-392.
https://doi.org/10.1039/B203191B
[32]. Madan, K. S.; Manjunath, B. C.; Lingaraju, G. S.; Abdoh, M. M. M.; Sadashiva, M. P.; Lokanath, N. K. Crystal. Struct. Theor. Appl. 2013, 3, 124-131.
[33]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Gaussian 09, Revision B. 01, Wallingford CT, 2010.
[34]. Hartley, D.; Kidd, H. (Eds.), The Agrochemicals Handbook, Royal Society of Chemistry, Unwin Brothers Ltd., Old Woking Surrey, United Kingdom, 1983.
[35]. Gerhartz, W.; Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., VCH Publishers, Deerfield Beach FL, 1985.
[36]. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.; NBO Version 3. 1, Gaussian Inc., Pittsburgh, PA, 2000-2003.
[37]. Dennington, R.; Keith T.; Millam J.; GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
[38]. Mckinnon, J. J.; Mitchell, A. S.; Spackman, M. A. Chem. Eur. J. 1998, 4, 2136-2144.
https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
[39]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11, 249-253.
https://doi.org/10.1039/B818330A
[40]. Hirshfeld, F. L. Theor. Chim. Acta. 1977, 44, 129-138.
https://doi.org/10.1007/BF00549096
[41]. Spackman, M. A.; Byrom P. G. Chem. Phys. Lett. 1997, 267, 215-220.
https://doi.org/10.1016/S0009-2614(97)00100-0
[42]. Rohl, A. L.; Moret, M.; Kaminsky, W.; Claborn, K.; McKinnon, J. J.; Kahr, B. Cryst. Growth Des. 2008, 8, 4517-4525.
https://doi.org/10.1021/cg8005212
[43]. Wolff S. K.; Grimwood D. J.; McKinnon J. J.; Turner M. J.; Jayatilaka D.; Spackman M. A. Crystal Explorer, the University of Western Australia, Australia, 2012.
[44]. Skovsen, I.; Christensen, M.; Clausen, H. F.; Overgaard, J.; Stiewe, C.; De gupta, T.; Mueller, E.; Spackman, M. A.; Iversen, B. B. Inorg. Chem. 2010, 49, 9343-9349.
https://doi.org/10.1021/ic100990a
[45]. Xavier, R. J.; Dinesh, P. Spectrochim. Acta A 2014, 118, 999-1011.
https://doi.org/10.1016/j.saa.2013.09.120
[46]. Scrocco, E.; Tomasi, J. Adv. Quant. Chem. 1978, 103, 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1
[47]. Luque, F. J.; Lopez, J. M.; Orozco, M. Theor. Chem. Acc. 2000, 103, 343-345.
https://doi.org/10.1007/s002149900013
[48]. Politzer, P.; Murray, J. S.; in: D. L. Beveridge; R. Lavery (Eds.), Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, Protein, Adenine Press, Schenectady, New York, 2, 1991.
[49]. Scrocco, E.; Tomasi, J. Curr. Chem. 1973, 7, 95-170.
[50]. Prachumrak, N.; Pansay, S.; Namuangruk, S.; Kaewin, T.; Jungsuttiwong S.; Sudyoadsuk; T.; Promarak V. Eur. J. Org. Chem. 2013, 29, 6619-6623.
https://doi.org/10.1002/ejoc.201300757
[51]. Kotchapadist, P.; Prachumrak, N.; Sunonnam, T.; Namuangruk, S.; Sudyoadsuk, T.; Keawin, T.; Jungsuttiwong, S.; Promarak, V. Eur. J. Org. Chem. 2015, 3, 496-505.
https://doi.org/10.1002/ejoc.201402680
[52]. Deshapande, N.; Belavagi N. S.; Sunagar M. G.; Gaonkar S.; Pujar G. H.; Wari M. N.; Inamdar S. R.; Khazi I. A. M. RSC Adv. 2015, 5, 86685-86696.
https://doi.org/10.1039/C5RA14550C
[53]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588
[54]. Kose, E.; Atac, A.; Bardak, F. J. Mol. Struct. 2018, 1163, 147-160.
https://doi.org/10.1016/j.molstruc.2018.02.099
[55]. Benzon, K. B.; Varghese, H. T.; Yohannan-Panicker, C.; Pradhan, K.; Bipransh, K. T.; Ashis, K. N.; Van-Alsenoy, C. Spectrochim. Acta A 2015, 146, 307-322.
https://doi.org/10.1016/j.saa.2015.03.063
[56]. Weinhold, F.; Eric, D. Glendening, NBO 6. 0 Program Manual, University of Wisconsin, Madison, Wisconsin 53706, 2013.
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.10.4.281-294.1844

















European Journal of Chemistry 2019, 10(4), 281-294 | doi: https://doi.org/10.5155/eurjchem.10.4.281-294.1844 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.