European Journal of Chemistry

Detailed analytical studies of 1,2,4-triazole derivatized quinoline

Crossmark


Main Article Content

Shilpa Mallappa Somagond
Manjunath Ningappa Wari
Saba Kauser Jaweed Shaikh
Sanjeev Ramchandra Inamdar
Madan Kumar Shankar
Dasappa Jagadeesh Prasad
Ravindra Ramappa Kamble

Abstract

The present study describes, the X-ray single crystal analysis of 4-((2-chloro-6-methoxyquinolin-3-yl)methyl)-2-phenyl-2H-1,2,4-triazol-3(4H)-one (TMQ). The crystal data for C19H15ClN4O2: monoclinic, space group P21/n (no. 14), a = 7.3314(15) Å, b = 12.459(3) Å, c = 18.948(4) Å, β = 98.322(9)°, = 1712.5(6) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.245 mm-1, Dcalc = 1.423 g/cm3, 5082 reflections measured (3.926° ≤ 2Θ ≤ 38.556°), 1428 unique (Rint = 0.0545, Rsigma = 0.0574) which were used in all calculations. The final R1 was 0.0423 (I >2σ(I)) and wR2 was 0.1145 (all data). The Density functional theory optimized molecular geometries in TMQ agree closely with those obtained from crystallographic studies. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy levels and energy gap were calculated by experimental (UV absorption & Cyclic voltammetry) and theoretical studies in two different solvents. The natural bond orbital analysis was performed to understand the molecular interaction on the basis of stability of molecule arising from hyper-conjugative interaction and charge delocalization. Hirshfeld surface and their related fingerprint plots enabled the identification of significant intermolecular interaction. The molecular electrostatic potential analysis provides the visual image of the chemically active sites and comparable reaction of atoms.


icon graph This Abstract was viewed 1632 times | icon graph Article PDF downloaded 616 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Somagond, S. M.; Wari, M. N.; Shaikh, S. K. J.; Inamdar, S. R.; Shankar, M. K.; Prasad, D. J.; Kamble, R. R. Detailed Analytical Studies of 1,2,4-Triazole Derivatized Quinoline. Eur. J. Chem. 2019, 10, 281-294.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Rastelli, E. J.; Truong, N. T.; Coltart, D. M. Org. Lett. 2016, 18, 5588-5591.
https://doi.org/10.1021/acs.orglett.6b02825

[2]. Kim, S. H.; Kaplan, J. A.; Sun, Y.; Shieh, A.; Sun, H. L.; Croce, C. M.; Parquette, J. R. Chem. Eur. J. 2015, 21, 101-105.
https://doi.org/10.1002/chem.201404520

[3]. Forkuo, A. D.; Ansah, C.; Boadu, K. M.; Boampong, J. N.; Ameyaw, E. O.; Gyan, B. A.; Ofori, M. F. Malar. J. 2016, 15, 1-12.
https://doi.org/10.1186/s12936-016-1223-8

[4]. Gaurav, A.; Singh, R. Med. Chem. Res. 2014, 23, 5008-5030.
https://doi.org/10.1007/s00044-014-1048-3

[5]. Lee, H. W.; Lee, H. S.; Park, J. H.; Cheong, J. J.; Kwon, H. B.; Kim, K. O.; Song, H. H. J. Appl. Biol. Chem. 2015, 58, 1-3 .

[6]. Wise, R.; Andrews, J. M.; Edwards, L. J. Antimicrob. Agents. Chemother. 1983, 23, 559-564.
https://doi.org/10.1128/AAC.23.4.559

[7]. Brown, C. E.; Mc Nulty, J.; Bordon, C.; Yolken, R.; Jones-Brando, L. Org. Biomol. Chem. 2016, 14, 5951-5955.
https://doi.org/10.1039/C6OB01083K

[8]. Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Curr. Med. Chem. 2010, 17, 1960-1973.
https://doi.org/10.2174/092986710791163966

[9]. Luo, Z. G.; Zeng, C. C.; Wang, F.; He, H. Q.; Wang, C. X.; Du, H. G.; Hu, L. M. Chem. Res. Chin. Univ. 2009, 25, 841-845.

[10]. Liu, H.; Dong, Y.; Zhang, B.; Liu, F.; Tan, C.; Tan, Y.; Jiang, Y. Sensors Sens. Actuator B-Chem. 2016, 234, 616-624.
https://doi.org/10.1016/j.snb.2016.04.175

[11]. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000, 122, 6769-6770.
https://doi.org/10.1021/ja0006292

[12]. El Ashry, E. S. H.; Awad, L. F.; Soliman, S. M.; Moaty, M. N. A. A.; Ghabbour, H. A.; Barakat, A. J. Mol. Struct. 2017, 1146, 432-440.
https://doi.org/10.1016/j.molstruc.2017.06.002

[13]. Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2004, 14, 6057-6059.
https://doi.org/10.1016/j.bmcl.2004.09.072

[14]. El Akri, K.; Bougrin, K.; Balzarini, J.; Faraj, A.; Benhida, R. Bioorg. Med. Chem. Lett. 2007, 17, 6656-6659.
https://doi.org/10.1016/j.bmcl.2007.08.077

[15]. Karthikeyan, M. S.; Holla, B. S.; Kumari, N. S. Eur. J. Med. Chem. 2008, 43, 309-314.
https://doi.org/10.1016/j.ejmech.2007.03.024

[16]. Somagond, S. M.; Kamble R. R.; Kattimani, P. P.; Shaikh, S. J.; Dixit, S. R.; Joshi, S. D.; Devarajegowda, H. C. Chemistry Select 2018, 3, 2004-2016.
https://doi.org/10.1002/slct.201702279

[17]. Yang, F.; Zhang, X. L.; Sun, K.; Xiong, M. J.; Xia, P. F.; Cao, Z. J. Synth. Met. 2008, 158, 988-992.
https://doi.org/10.1016/j.synthmet.2008.06.028

[18]. Maiti, A.; Svizhenko, A.; Anantram, M. P. Phys. Rev. Lett. 2002, 88, 1268051-1268054.
https://doi.org/10.1103/PhysRevLett.88.126805

[19]. Zhou, D.; Ma, D.; Wang, Y.; Xianchun Liu; Xinhe Bao; Chem. Phys. Lett. 2003, 373, 46-51.
https://doi.org/10.1016/S0009-2614(03)00513-X

[20]. Leconte, J.; Markovits, A.; Skalli, M. K.; Minot, C.; Belmajdoub, A. Surf. Sci. 2002, 497, 194-204.
https://doi.org/10.1016/S0039-6028(01)01477-7

[21]. Wang, J.; Liu, C.; Fang, Z.; Liu, Y.; Han, Z.; J. Phys. Chem. B 2004, 108, 1653-1659.
https://doi.org/10.1021/jp035779o

[22]. Koch, W.; Holthausen, M. C. A.; Chemists Guide to Density Functional Theory, Wiley-VCH, Weinheim, New York, Chichester, 2000.

[23]. Parr, R. G.; Yang, W. T.; Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

[24]. Szafran, M.; Komasa, A.; Adamska, E. B. J. Mol. Struct. Theochem. 2007, 827, 101-107.
https://doi.org/10.1016/j.molstruc.2006.05.012

[25]. Rigaku, Crystal Clear SM Expert 2. 0 r15. Software for data collection and processing. Rigaku Corporation, Tokyo, Japan. 2011.

[26]. Sheldrick, G. M. Acta. Cryst. A 2008, 64, 112-122.
https://doi.org/10.1107/S0108767307043930

[27]. Spek, A. L. Acta. Cryst. A 1990, 46, C34.
https://doi.org/10.1107/S0108270189012850

[28]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edging-ton, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van deStreek, J.; Wood, P. A. J. Appl. Crystallog. 2008, 41, 466-470.
https://doi.org/10.1107/S0021889807067908

[29]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S.; J. Acta. Crystallogr. B 2004, 60, 627-668.
https://doi.org/10.1107/S0108768104020300

[30]. Spackman, M. A.; Jayatilaka, D. Cryst. Engg. Comm. 2009, 11, 19-32.
https://doi.org/10.1039/B818330A

[31]. Spackman, M. A.; McKinnon, J. J. Cryst. Eng. Comm. 2002, 4, 378-392.
https://doi.org/10.1039/B203191B

[32]. Madan, K. S.; Manjunath, B. C.; Lingaraju, G. S.; Abdoh, M. M. M.; Sadashiva, M. P.; Lokanath, N. K. Crystal. Struct. Theor. Appl. 2013, 3, 124-131.

[33]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Gaussian 09, Revision B. 01, Wallingford CT, 2010.

[34]. Hartley, D.; Kidd, H. (Eds.), The Agrochemicals Handbook, Royal Society of Chemistry, Unwin Brothers Ltd., Old Woking Surrey, United Kingdom, 1983.

[35]. Gerhartz, W.; Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., VCH Publishers, Deerfield Beach FL, 1985.

[36]. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.; NBO Version 3. 1, Gaussian Inc., Pittsburgh, PA, 2000-2003.

[37]. Dennington, R.; Keith T.; Millam J.; GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.

[38]. Mckinnon, J. J.; Mitchell, A. S.; Spackman, M. A. Chem. Eur. J. 1998, 4, 2136-2144.
https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G

[39]. Spackman, M. A.; Jayatilaka, D. Cryst. Eng. Comm. 2009, 11, 249-253.
https://doi.org/10.1039/B818330A

[40]. Hirshfeld, F. L. Theor. Chim. Acta. 1977, 44, 129-138.
https://doi.org/10.1007/BF00549096

[41]. Spackman, M. A.; Byrom P. G. Chem. Phys. Lett. 1997, 267, 215-220.
https://doi.org/10.1016/S0009-2614(97)00100-0

[42]. Rohl, A. L.; Moret, M.; Kaminsky, W.; Claborn, K.; McKinnon, J. J.; Kahr, B. Cryst. Growth Des. 2008, 8, 4517-4525.
https://doi.org/10.1021/cg8005212

[43]. Wolff S. K.; Grimwood D. J.; McKinnon J. J.; Turner M. J.; Jayatilaka D.; Spackman M. A. Crystal Explorer, the University of Western Australia, Australia, 2012.

[44]. Skovsen, I.; Christensen, M.; Clausen, H. F.; Overgaard, J.; Stiewe, C.; De gupta, T.; Mueller, E.; Spackman, M. A.; Iversen, B. B. Inorg. Chem. 2010, 49, 9343-9349.
https://doi.org/10.1021/ic100990a

[45]. Xavier, R. J.; Dinesh, P. Spectrochim. Acta A 2014, 118, 999-1011.
https://doi.org/10.1016/j.saa.2013.09.120

[46]. Scrocco, E.; Tomasi, J. Adv. Quant. Chem. 1978, 103, 115-193.
https://doi.org/10.1016/S0065-3276(08)60236-1

[47]. Luque, F. J.; Lopez, J. M.; Orozco, M. Theor. Chem. Acc. 2000, 103, 343-345.
https://doi.org/10.1007/s002149900013

[48]. Politzer, P.; Murray, J. S.; in: D. L. Beveridge; R. Lavery (Eds.), Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, Protein, Adenine Press, Schenectady, New York, 2, 1991.

[49]. Scrocco, E.; Tomasi, J. Curr. Chem. 1973, 7, 95-170.

[50]. Prachumrak, N.; Pansay, S.; Namuangruk, S.; Kaewin, T.; Jungsuttiwong S.; Sudyoadsuk; T.; Promarak V. Eur. J. Org. Chem. 2013, 29, 6619-6623.
https://doi.org/10.1002/ejoc.201300757

[51]. Kotchapadist, P.; Prachumrak, N.; Sunonnam, T.; Namuangruk, S.; Sudyoadsuk, T.; Keawin, T.; Jungsuttiwong, S.; Promarak, V. Eur. J. Org. Chem. 2015, 3, 496-505.
https://doi.org/10.1002/ejoc.201402680

[52]. Deshapande, N.; Belavagi N. S.; Sunagar M. G.; Gaonkar S.; Pujar G. H.; Wari M. N.; Inamdar S. R.; Khazi I. A. M. RSC Adv. 2015, 5, 86685-86696.
https://doi.org/10.1039/C5RA14550C

[53]. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840.
https://doi.org/10.1063/1.1740588

[54]. Kose, E.; Atac, A.; Bardak, F. J. Mol. Struct. 2018, 1163, 147-160.
https://doi.org/10.1016/j.molstruc.2018.02.099

[55]. Benzon, K. B.; Varghese, H. T.; Yohannan-Panicker, C.; Pradhan, K.; Bipransh, K. T.; Ashis, K. N.; Van-Alsenoy, C. Spectrochim. Acta A 2015, 146, 307-322.
https://doi.org/10.1016/j.saa.2015.03.063

[56]. Weinhold, F.; Eric, D. Glendening, NBO 6. 0 Program Manual, University of Wisconsin, Madison, Wisconsin 53706, 2013.

Supporting Agencies

UGC UPE FAR-I “Antitumor activity, An Integrated Approach” vide F. No. 14-3/2012 (NS/PE), University Grants commission (UGC), New Delhi, India.
Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).