

X-ray diffraction and Density Functional Theory based structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-1,2,4-triazolone
Shilpa Mallappa Somagond (1)









(1) Department of Chemistry, Karnatak University, Dharwad, 580003, India
(2) Department of Chemistry, Karnatak University, Dharwad, 580003, India
(3) Department of Chemistry, Karnatak University, Dharwad, 580003, India
(4) Department of Physics, Karnatak University, Dharwad, 580003, India
(5) Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 9C 41390, Sweden
(6) Department of Physics, Karnatak University, Dharwad, 580003, India
(7) Department of Chemistry, Karnatak University, Dharwad, 580003, India
(8) Department of Materials Science, Mangalore University, Mangalagangothri, 574199, India
(9) Department of Chemistry, Karnatak University, Dharwad, 580003, India
(*) Corresponding Author
Received: 26 Jul 2021 | Revised: 26 Aug 2021 | Accepted: 23 Oct 2021 | Published: 31 Dec 2021 | Issue Date: December 2021
Abstract
This study is composed of X-ray diffraction and Density Functional Theory (DFT) based molecular structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2PPT). Crystal data for C11H9N3O: Monoclinic, space group P21/c (no. 14), a = 7.8975(2) Å, b = 11.6546(4) Å, c = 11.0648(3) Å, β = 105.212(2)°, V = 982.74(5) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.346 g/cm3, 13460 reflections measured (5.174° ≤ 2Θ ≤ 64.72°), 3477 unique (Rint = 0.0314, Rsigma = 0.0298) which were used in all calculations. The final R1 was 0.0470 (I > 2σ(I)) and wR2 was 0.1368 (all data). The experimentally determined data was supported by theoretically optimized calculations processed with the help of Hartree-Fock (HF) technique and Density Functional Theory with the 6-311G(d,p) basis set in the ground state. Geometrical parameters (Bond lengths and angles) as well as spectroscopic (FT-IR, 1H NMR, and 13C NMR) properties of 2PPT molecule has been optimized theoretically and compared with the experimentally obtained results. Hirshfeld surface analysis with 2D fingerprinting plots was used to figure out the possible and most significant intermolecular interactions. The electronic characterizations such as molecular electrostatic potential map (MEP) and Frontier molecular orbital (FMO) energies have been studied by DFT/B3LYP approach. The MEP imparted the detailed information regarding electronegative and electropositive regions across the molecule. The HOMO-LUMO energy gap as high as 5.3601 eV was found to be responsible for the high kinetic stability of the 2PPT.
Announcements
Our editors have decided to support scientists to publish their manuscripts in European Journal of Chemistry without any financial constraints.
1- The article processing fee will not be charged from the articles containing the single-crystal structure characterization or a DFT study between September 15, 2023 and October 31, 2023 (Voucher code: FALL2023).
2. A 50% discount will be applied to the article processing fee for submissions made between September 15, 2023 and October 31, 2023 by authors who have at least one publication in the European Journal of Chemistry (Voucher code: AUTHOR-3-2023).
3. Young writers will not be charged for the article processing fee between September 15, 2023 and October 31, 2023 (Voucher code: YOUNG2023).
Editor-in-Chief
European Journal of Chemistry
Keywords
Full Text:
PDF

DOI: 10.5155/eurjchem.12.4.459-468.2160
Links for Article
| | | | | | |
| | | | | | |
| | | |
Related Articles
Article Metrics


Funding information
University Grants Commission [F. No. 14-3/2012(NS/PE) Dated: 14-03-2012] , New Delhi, India.
References
[1]. Liu, J.; Liu, Q.; Yang, X.; Xu, S.; Zhang, H.; Bai, R.; Yao, H.; Jiang, J.; Shen, M.; Wu, X.; Xu, J. Bioorg. Med. Chem. 2013, 21 (24), 7742-7751.
https://doi.org/10.1016/j.bmc.2013.10.017
[2]. Somagond, S. M.; Kamble, R. R.; Kattimani, P. P.; Joshi, S. D.; Dixit, S. R. Heterocycl. Comm. 2017, 23 (4), 317-324.
https://doi.org/10.1515/hc-2016-0073
[3]. Chandna, N.; Kapoor, J. K.; Grover, J.; Bairwa, K.; Goyal, V.; Jachak, S. M. New J. Chem. 2014, 38 (8), 3662-3672.
https://doi.org/10.1039/C4NJ00226A
[4]. Nesaragi, A. R.; Kamble, R. R.; Bayannavar, P. K.; Shaikh, S. K. J.; Hoolageri, S. R.; Kodasi, B.; Joshi, S. D.; Kumbar, V. M. Bioorg. Med. Chem. Lett. 2021, 41 (127984), 127984.
https://doi.org/10.1016/j.bmcl.2021.127984
[5]. Shaikh, S. K. J.; Sannaikar, M. S.; Kumbar, M. N.; Bayannavar, P. K.; Kamble, R. R.; Inamdar, S. R.; Joshi, S. D. ChemistrySelect 2018, 3 (16), 4448-4462.
https://doi.org/10.1002/slct.201702596
[6]. Liang, L.; Astruc, D. Coord. Chem. Rev. 2011, 255 (23-24), 2933-2945.
https://doi.org/10.1016/j.ccr.2011.06.028
[7]. Gimadiev, T. R.; Klimchuk, O.; Nugmanov, R. I.; Madzhidov, T. I.; Varnek, A. J. Mol. Struct. 2019, 1198 (126897), 126897.
https://doi.org/10.1016/j.molstruc.2019.126897
[8]. Popov, S. A.; Romanenko, G. V.; Reznikov, V. A. J. Mol. Struct. 2008, 872 (1), 30-39.
https://doi.org/10.1016/j.molstruc.2007.02.015
[9]. Naveen; Tittal, R. K.; Ghule, V. D.; Kumar, N.; Kumar, L.; Lal, K.; Kumar, A. J. Mol. Struct. 2020, 1209 (127951), 127951.
https://doi.org/10.1016/j.molstruc.2020.127951
[10]. Larsen, J. S.; Zahran, M. A.; Pedersen, E. B.; Nielsen, C. Monatsh. Chem. 1999, 130 (9), 1167-1173.
https://doi.org/10.1007/PL00010295
[11]. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112 (1), 289-320.
https://doi.org/10.1021/cr200107z
[12]. Jones, R. O. Rev. Mod. Phys. 2015, 87, 897-923.
https://doi.org/10.1103/RevModPhys.87.897
[13]. Hostaš, J.; Řezáč, J. J. Chem. Theory Comput. 2017, 13 (8), 3575-3585.
https://doi.org/10.1021/acs.jctc.7b00365
[14]. Kohn, W. Rev. Mod. Phys. 1999, 71 (5), 1253-1266.
https://doi.org/10.1103/RevModPhys.71.1253
[15]. Bayannavar, P. K.; Sannaikar, M. S.; Madan Kumar, S.; Inamdar, S. R.; Shaikh, S. K. J.; Nesaragi, A. R.; Kamble, R. R. J. Mol. Struct. 2019, 1179, 809-819.
[16]. Kattimani, P. P.; Kamble, R. R.; Dorababu, A.; Hunnur, R. K.; Kamble, A. A.; Devarajegowda, H. C. J. Heterocycl. Chem. 2017, 54 (4), 2258-2265.
[17]. Somagond, S. M.; Wari, M. N.; Shaikh, S. K. J.; Inamdar, S. R.; Shankar, M. K.; Prasad, D. J.; Kamble, R. R. Eur. J. Chem. 2019, 10 (4), 281-294.
https://doi.org/10.5155/eurjchem.10.4.281-294.1844
[18]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930
[19]. Spek, A. L. Acta Crystallogr. A 1990, 46 (s1), 34-34.
https://doi.org/10.1111/j.1399-6576.1990.tb03209.x
[20]. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
https://doi.org/10.1107/S0021889807067908
[21]. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. J. Phys. Chem. A 2002, 106 (29), 6871-6875.
https://doi.org/10.1021/jp020715j
[22]. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B Condens. Matter 1988, 37 (2), 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[23]. Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94 (9), 6081-6090.
https://doi.org/10.1063/1.460447
[24]. Ditchfield, R. J. Chem. Phys. 1972, 56 (11), 5688-5691.
https://doi.org/10.1063/1.1677088
[25]. Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112 (23), 8251-8260.
https://doi.org/10.1021/ja00179a005
[26]. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D.; Spackman, M. A. J. Appl. Cryst. 2021, 54 (3), 1006-1011.
https://doi.org/10.1107/S1600576721002910
[27]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A
[28]. Turner, M. J.; McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. CrystEngComm 2011, 13 (6), 1804-1813.
https://doi.org/10.1039/C0CE00683A
[29]. Kumbar, M. N.; Kamble, R. R.; Dasappa, J. P.; Bayannavar, P. K.; Khamees, H. A.; Mahendra, M.; Joshi, S. D.; Dodamani, S.; Rasal, V. P.; Jalalpure, S. J. Mol. Struct. 2018, 1160, 63-72.
https://doi.org/10.1016/j.molstruc.2018.01.047
[30]. Glusker, J. P.; Lewis, M.; Rossi, M. Crystal Structure Analysis for Chemists and Biologists. VCH Publishers New York. 1994, ISBN 0-89573-273-4.
[31]. Şen, B.; Sevincek, R.; Beksultanova, N.; Dogan, Ö. J. Mol. Struct. 2018, 1173, 33-41.
https://doi.org/10.1016/j.molstruc.2018.06.085
[32]. Panini, P.; Mohan, T. P.; Gangwar, U.; Sankolli, R.; Chopra, D. CrystEngComm 2013, 15 (22), 4549-4564.
https://doi.org/10.1039/c3ce40278a
[33]. Sathish, M.; Meenakshi, G.; Xavier, S.; Sebastian, S.; Periandy, S.; Ahmad, N.; Jamalis, J.; Rosli, M.; Fun, H.-K. J. Mol. Struct. 2018, 1164, 420-437.
https://doi.org/10.1016/j.molstruc.2018.03.004
[34]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c
[35]. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4 (66), 378-392.
https://doi.org/10.1039/B203191B
[36]. Singh, R. N.; Kumar, A.; Tiwari, R. K.; Rawat, P. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 113, 378-385.
https://doi.org/10.1016/j.saa.2013.04.121
[37]. Sjoberg, P.; Politzer, P. J. Phys. Chem. 1990, 94 (10), 3959-3961.
https://doi.org/10.1021/j100373a017
[38]. Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55 (3), 379-400.
https://doi.org/10.1016/0022-2836(71)90324-X
[39]. Weiner, P. K.; Langridge, R.; Blaney, J. M.; Schaefer, R.; Kollman, P. A. Proc. Natl. Acad. Sci. U. S. A. 1982, 79 (12), 3754-3758.
https://doi.org/10.1073/pnas.79.12.3754
[40]. Connolly, M. L. Science 1983, 221 (4612), 709-713.
https://doi.org/10.1126/science.6879170
[41]. Francl, M. M.; Hout, R. F., Jr; Hehre, W. J. J. Am. Chem. Soc. 1984, 106 (3), 563-570.
https://doi.org/10.1021/ja00315a018
[42]. Arteca, G. A.; Jammal, V. B.; Mezey, P. G.; Yadav, J. S.; Hermsmeier, M. A.; Gund, T. M. J. Mol. Graph. 1988, 6 (1), 45-53.
https://doi.org/10.1016/0263-7855(88)80061-4
[43]. Dunitz, J. D.; Filippini, G.; Gavezzotti, A. Tetrahedron 2000, 56 (36), 6595-6601.
https://doi.org/10.1016/S0040-4020(00)00460-9
[44]. Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68 (3), 441-451.
https://doi.org/10.1021/j100785a001
[45]. Vasanthakumari, R.; Nirmala, W.; Sagadevan, S.; Mugeshini, S.; Rajeswari, N.; Balu, R.; Santhakumari, R. J. Mol. Struct. 2021, 1239 (130449), 130449.
https://doi.org/10.1016/j.molstruc.2021.130449
[46]. Naresh, P.; Pramodh, B.; Naveen, S.; Ganguly, S.; Panda, J.; Sunitha, K.; Maniukiewicz, W.; Lokanath, N. K. J. Mol. Struct. 2021, 1236 (130228), 130228.
https://doi.org/10.1016/j.molstruc.2021.130228
Supporting information
The Supplementary Material for this article can be found online at: Supplementary files
How to cite
The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item
DOI Link: https://doi.org/10.5155/eurjchem.12.4.459-468.2160

















European Journal of Chemistry 2021, 12(4), 459-468 | doi: https://doi.org/10.5155/eurjchem.12.4.459-468.2160 | Get rights and content
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Authors

This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).
© Copyright 2010 - 2023 • Atlanta Publishing House LLC • All Right Reserved.
The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.
Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.