European Journal of Chemistry 2021, 12(2), 124-132 | doi: https://doi.org/10.5155/eurjchem.12.2.124-132.2066 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Antimicrobial and catalytic applications of TiO2 nanoparticles prepared from titanium(IV)-Schiff base complexes as precursor


Mohammad Nasir Uddin (1,*) orcid , Tareq Mahmud (2) orcid , Wahhida Shumi (3) orcid , AKM Atique Ullah (4) orcid

(1) Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram-4331, Bangladesh
(2) Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram-4331, Bangladesh
(3) Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chattogram-4331, Bangladesh
(4) Nanoscience and Technology Research Laboratory, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
(*) Corresponding Author

Received: 11 Jan 2021 | Revised: 01 Mar 2021 | Accepted: 28 Mar 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


Attempts have been made to synthesis titanium dioxide (TiO2) nanoparticles using titanium (IV) complexes of Schiff base (TiOL) as a precursor where Schiff base ligand (L) act as a dibasic tetradentate one. TiO2 nanoparticles were synthesized by the direct calcination of titanium complexes at 500 °C for 3 hours. The analytical tools such as FT-IR, XRD, EDS, and SEM provided evidences in favor of the formation of TiO2 nanoparticles. Antimicrobial study showed that all prepared TiO2 nanoparticles have inhibition capacity on the growth against selected plant pathogenic fungi as well as some selected human pathogenic bacteria. Moreover, these TiO2 nanoparticles have catalytic capacity for the remarkable degradation (54.0%) of organic dye (Mordent brown 48) as well as industrial dye solutions.


Keywords


Calcination; Schiff bases; TiO2 nanoparticle; Antimicrobial activity; Photo-catalytic activity; Titanium (IV) complexes

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.124-132.2066

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 332 times | icon graph PDF Article downloaded 58 times

Funding information


University of Chittagong, Chattogram-4331, Bangladesh.

References


[1]. Lawrence J. F.; Frei R. W. Chemical Derivatization in Chromatography, Elsevier, Amsterdam, 1976.

[2]. Zaki, Z. M.; Haggag, S. S.; Soayed, A. A. Spectrosc. Lett. 1998, 31, 757-766.
https://doi.org/10.1080/00387019808007397

[3]. Shama, S. A.; Omara, H. Spectrosc. Lett. 2001, 34, 49-56.
https://doi.org/10.1081/SL-100001450

[4]. Gaballa, A. S.; Asker, M. S.; Barakat, A. S.; Teleb, S. M. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 114-121.
https://doi.org/10.1016/j.saa.2006.06.031

[5]. da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V. B.; de Fatima, A. J. Adv. Res. 2011, 2, 1-8.
https://doi.org/10.1016/j.jare.2010.05.004

[6]. Uddin, M. N.; Ahmed, S. S.; Alam, S. M. R. J. Coord. Chem. 2020, 73 (23), 3109-3149.
https://doi.org/10.1080/00958972.2020.1854745

[7]. Saghatforoush, L. A.; Mehdizadeh, R.; Chalabian, F. J. Chem. Pharm. Res. 2011, 3(2), 691-702.

[8]. Sheikhshoaie I.; Ranjbar Z. R.; Sohaleh H. Chem. Xpress. 2014, 3(4), 167-172.

[9]. Mazzola, L. Nat. Biotechnol. 2003, 21, 1137-1143.
https://doi.org/10.1038/nbt1003-1137

[10]. Paull, R.; Wolfe, J.; Hébert, P.; Sinkula, M. Nat. Biotechnol. 2003, 21, 1144-1147.
https://doi.org/10.1038/nbt1003-1144

[11]. Khalaji D.; Rahdari A. R. Int. J. Bio-Inorg. Hybrid Nanomater. 2015, 4 (4), 209-213.

[12]. Abdel-Rahman, L. H.; Abu-Dief, A. M.; Newair, E. F.; Hamdan, S. K. J. Photochem. Photobiol. B 2016, 160, 18-31.
https://doi.org/10.1016/j.jphotobiol.2016.03.040

[13]. Kessler, R. Environ. Health Perspect. 2011, 119, a120-5.
https://doi.org/10.1289/ehp.119-a514

[14]. Zhang, Y.; Leu, Y.-R.; Aitken, R. J.; Riediker, M. Int. J. Environ. Res. Public Health 2015, 12, 8717-8743.
https://doi.org/10.3390/ijerph120808717

[15]. Petković, J.; Zegura, B.; Stevanović, M.; Drnovšek, N.; Uskoković, D.; Novak, S.; Filipič, M. Nanotoxicology 2011, 5, 341-353.
https://doi.org/10.3109/17435390.2010.507316

[16]. Farbod, M.; Khademalrasool, M. Powder Technol. 2011, 214, 344-348.
https://doi.org/10.1016/j.powtec.2011.08.026

[17]. Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci. 2002, 252, 339-346.
https://doi.org/10.1006/jcis.2002.8454

[18]. Uddin, M. N.; Siddique, Z. A.; Mase, N.; Uzzaman, M.; Shumi, W. Appl. Organomet. Chem. 2019, 33, e4876.
https://doi.org/10.1002/aoc.4876

[19]. Uddin, M. N.; Khandaker, S.; Moniruzzaman; Amin, M. S.; Shumi, W.; Rahman, M. A.; Rahman, S. M. J. Mol. Struct. 2018, 1166, 79-90.
https://doi.org/10.1016/j.molstruc.2018.04.025

[20]. Uddin, M. N.; Chowdhury, D. A.; Mase, N.; Rashid, M. F.; Uzzaman, M.; Ahsan, A.; Shah, N. M. J. Coord. Chem. 2018, 71, 3874-3892.
https://doi.org/10.1080/00958972.2018.1533125

[21]. Jensen, H.; Soloviev, A.; Li, Z.; Søgaard, E. G. Appl. Surf. Sci. 2005, 246, 239-249.
https://doi.org/10.1016/j.apsusc.2004.11.015

[22]. Jenkins R.; Snyder R. L., Introduction to X-Ray Powder Diffractometry; John Wiley & Sons: London, 1996.
https://doi.org/10.1002/9781118520994

[23]. Pinjari, D. V.; Prasad, K.; Gogate, P. R.; Mhaske, S. T.; Pandit, A. B. Ultrason. Sonochem. 2015, 23, 185-191.
https://doi.org/10.1016/j.ultsonch.2014.10.017

[24]. Czanderna, A. W.; Rao, C. N. R.; Honig, J. M. Trans. Faraday Soc. 1958, 54, 1069-1073.
https://doi.org/10.1039/TF9585401069

[25]. Swanson H. E.; Tatge E. Natl. Bur. Std. U.S. Circ. 1953, 539, 46-47.

[26]. Ba-Abbad, M. M.; Kadhum, A. A. H.; Mohamad, A. B.; Takriff, M. S.; Sopian, K. Int. J. Electrochem. Sci. 2012, 7, 4871-4888.

[27]. Uddin, M. N.; Rahman, M. S.; Shumi, W.; Hossain, M. K.; Ullah, A. K. M. A. J. Chem. Sci. (Bangalore) 2020, 132.
https://doi.org/10.1007/s12039-020-01840-y


How to cite


Uddin, M.; Mahmud, T.; Shumi, W.; Ullah, A. Eur. J. Chem. 2021, 12(2), 124-132. doi:10.5155/eurjchem.12.2.124-132.2066
Uddin, M.; Mahmud, T.; Shumi, W.; Ullah, A. Antimicrobial and catalytic applications of TiO2 nanoparticles prepared from titanium(IV)-Schiff base complexes as precursor. Eur. J. Chem. 2021, 12(2), 124-132. doi:10.5155/eurjchem.12.2.124-132.2066
Uddin, M., Mahmud, T., Shumi, W., & Ullah, A. (2021). Antimicrobial and catalytic applications of TiO2 nanoparticles prepared from titanium(IV)-Schiff base complexes as precursor. European Journal of Chemistry, 12(2), 124-132. doi:10.5155/eurjchem.12.2.124-132.2066
Uddin, Mohammad, Tareq Mahmud, Wahhida Shumi, & AKM Atique Ullah. "Antimicrobial and catalytic applications of TiO2 nanoparticles prepared from titanium(IV)-Schiff base complexes as precursor." European Journal of Chemistry [Online], 12.2 (2021): 124-132. Web. 27 Oct. 2021
Uddin, Mohammad, Mahmud, Tareq, Shumi, Wahhida, AND Ullah, AKM. "Antimicrobial and catalytic applications of TiO2 nanoparticles prepared from titanium(IV)-Schiff base complexes as precursor" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.124-132.2066

CrossRef | Scilit | GrowKudos | Researchgate | Publons | Microsoft | scibey | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 124-132 | doi: https://doi.org/10.5155/eurjchem.12.2.124-132.2066 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2021  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2021 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.