European Journal of Chemistry 2021, 12(3), 304-313 | doi: https://doi.org/10.5155/eurjchem.12.3.304-313.2099 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid


Akhileshwari Prabhuswamy (1,*) orcid , Yasser Hussein Eissa Mohammed (2) orcid , Fares Hezam Al-Ostoot (3) orcid , Geetha Doddanahalli Venkatesh (4) orcid , Sridhar Mandayam Anandalwar (5) orcid , Shaukath Ara Khanum (6) orcid , Lokanath Neratur Krishnappagowda (7) orcid

(1) Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, India
(2) Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru 570 006, India
(3) Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru 570 006, India
(4) Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, India
(5) Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, India
(6) Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru 570 006, India
(7) Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru 570 006, India
(*) Corresponding Author

Received: 30 Jan 2021 | Revised: 26 Jul 2021 | Accepted: 07 Aug 2021 | Published: 30 Sep 2021 | Issue Date: September 2021

Abstract


The compound 2-(4-fluorophenoxy) acetic acid was synthesized by refluxing, 4-fluoro-phenol as a starting material with ethyl chloroacetate in acetone as solvent. The compound crystallizes in the monoclinic crystal system with the space group P21/c. Crystal data for C8H7FO3, a = 13.3087(17) Å, b = 4.9912(6) Å, c = 11.6018(15) Å, β = 104.171(4)°, V = 747.21(16) Å3, Z = 4, T = 293(2) K, μ(CuKα) = 1.142 mm-1, Dcalc = 1.512 g/cm3, 8759 reflections measured (13.72° ≤ 2Θ ≤ 130.62°), 1246 unique (Rint = 0.0528) which were used in all calculations. The final R1 was 0.0458 (>2sigma(I)) and wR2 was 0.1313 (all data). The structure was stabilized by C-H···O and C-H···Cg interactions. The intermolecular interactions in the crystal were studied using Hirshfeld surface analysis. 3D energy frameworks were computed to visualize the packing modes. DFT calculations were performed. The FMOs were studied to estimate the kinetic stability and reactivity of the molecule. The MEP surface was generated to investigate the charge distribution and chemical reactive sites in the molecule.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


DFT; MEP; HOMO-LUMO; Crystal structure; Phenoxyacetic acid; Hirshfeld surface analysis

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.3.304-313.2099

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 430 times | icon graph PDF Article downloaded 149 times


Citations

/


[1]. Soundararajan Eswari, Subbiah Thirumaran
Synthesis, crystal structure, Hirshfeld surface analysis, and DFT studies on (2,2’-bipyridine)chlorobis(N,N-bis(thiophen-2-ylmethyl)dithiocarbamato-S,S’)zinc(II) complex
European Journal of Chemistry  13(1), 91, 2022
DOI: 10.5155/eurjchem.13.1.91-98.2212
/


References


[1]. Geetha, D. V.; Al-Ostoot, F. H.; Mohammed, Y. H. E.; Sridhar, M. A.; Khanum, S. A.; Lokanath, N. K. J. Mol. Struct. 2019, 1178, 384-393.
https://doi.org/10.1016/j.molstruc.2018.10.016

[2]. Sharma, G.; Anthal, S.; Geetha, D. V.; Al-Ostoot, F. H.; Hussein Eissa Mohammed, Y.; Ara Khanum, S.; Sridhar, M. A.; Kant, R. Mol. Cryst. Liq. Cryst. 2018, 675 (1), 85-95.
https://doi.org/10.1080/15421406.2019.1624051

[3]. Mohammed, Y. H. E.; Malojirao, V. H.; Thirusangu, P.; Al-Ghorbani, M.; Prabhakar, B. T.; Khanum, S. A. Eur. J. Med. Chem. 2018, 143, 1826-1839.
https://doi.org/10.1016/j.ejmech.2017.10.082

[4]. Haupt, K.; Dzgoev, A.; Mosbach, K. Anal. Chem. 1998, 70 (3), 628-631.
https://doi.org/10.1021/ac9711549

[5]. Zhang, H.; Song, T.; Zong, F.; Chen, T.; Pan, C. Int. J. Mol. Sci. 2008, 9 (1), 98-106.
https://doi.org/10.3390/ijms9010098

[6]. Mokale, S. N.; Nevase, M. C.; Sakle, N. S.; Dube, P. N.; Shelke, V. R.; Bhavale, S. A.; Begum, A. Bioorg. Med. Chem. Lett. 2014, 24 (9), 2155-2158.
https://doi.org/10.1016/j.bmcl.2014.03.030

[7]. Begum, S.; Bharathi, K.; Prasad, K. Int. J. Pharm. Pharm. Sci. 2016, 8 (10), 66-71.
https://doi.org/10.22159/ijpps.2016v8i10.5005

[8]. Wang, X.; Zhao, T.; Yang, B.; Li, Z.; Cui, J.; Dai, Y.; Qiu, Q.; Qiang, H.; Huang, W.; Qian, H. Bioorg. Med. Chem. 2015, 23 (1), 132-140.
https://doi.org/10.1016/j.bmc.2014.11.016

[9]. Kumara, K.; Al-Ostoot, F. H.; Mohammed, Y. H. E.; Khanum, S. A.; Lokanath, N. K. Chem. Data Coll. 2019, 20 (100195), 100195.
https://doi.org/10.1016/j.cdc.2019.100195

[10]. Takeda, Y.; Kawagoe, K.; Yokomizo, A.; Yokomizo, Y.; Hosokami, T.; Ogihara, Y.; Honda, Y.; Yokohama, S. Chem. Pharm. Bull. (Tokyo) 1998, 46 (3), 434-444.
https://doi.org/10.1248/cpb.46.434

[11]. Dahiya, R.; Kaur, R. Aust. J. Basic App. Sci. 2007, 1 (4), 525-532. http://www.ajbasweb.com/old/ajbas/525-532.pdf (accessed Jul 31, 2021).

[12]. Shahar Yar, M.; Bakht, M. A.; Siddiqui, A. A.; Abdullah, M. M.; De Clercq, E. J. Enzyme Inhib. Med. Chem. 2009, 24 (3), 876-882.
https://doi.org/10.1080/14756360802447917

[13]. Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Eur. J. Med. Chem. 2008, 43 (4), 846-852.
https://doi.org/10.1016/j.ejmech.2007.06.010

[14]. Rani, P.; Pal, D., Kumar; Hegde, R., Rama; Hashim, S., Riaz. Hem. Ind. 2015, 69 (4), 405-415.
https://doi.org/10.2298/HEMIND140330057R

[15]. Tipparaju, S. K.; Muench, S. P.; Mui, E. J.; Ruzheinikov, S. N.; Lu, J. Z.; Hutson, S. L.; Kirisits, M. J.; Prigge, S. T.; Roberts, C. W.; Henriquez, F. L.; Kozikowski, A. P.; Rice, D. W.; McLeod, R. L. J. Med. Chem. 2010, 53 (17), 6287-6300.
https://doi.org/10.1021/jm9017724

[16]. Sun, A.; Prussia, A.; Zhan, W.; Murray, E. E.; Doyle, J.; Cheng, L.-T.; Yoon, J.-J.; Radchenko, E. V.; Palyulin, V. A.; Compans, R. W.; Liotta, D. C.; Plemper, R. K.; Snyder, J. P. J. Med. Chem. 2006, 49 (17), 5080-5092.
https://doi.org/10.1021/jm0602559

[17]. Nikalje, A. P. G.; Deshpande, D.; Une, H. D. Euro. J. Exp. Bio. 2012, 2 (2), 343-353. https://www.imedpub.com/articles/facile-synthesis-and-iin-vivoi-hypoglycemic-activity-of-novel-2-4hiazolidinedione-derivatives.pdf (accessed Jul 31, 2021).

[18]. Al-Ostoot, F. H.; Geetha, D. V.; Mohammed, Y. H. E.; Akhileshwari, P.; Sridhar, M. A.; Khanum, S. A. J. Mol. Struct. 2020, 1202 (127244), 127244.
https://doi.org/10.1016/j.molstruc.2019.127244

[19]. Al-Ostoot, F. H.; Mohammed, Y. H. E.; Zabiulla, A. N. K.; Khanum, S. A. J. Appl. Pharm. Sci. 2019, 9 (7), 42-49.

[20]. Eissa Mohammed, Y. H.; Thirusangu, P.; Vigneshwaran, V.; Prabhakar, B. T.; Khanum, S. A. Biomed. Pharmacother. 2017, 95, 375-386.
https://doi.org/10.1016/j.biopha.2017.08.105

[21]. Northover, B. J.; Verghese, J. J. Pharm. Pharmacol. 1962, 14 (1), 615-616.
https://doi.org/10.1111/j.2042-7158.1962.tb11149.x

[22]. Harsanyi, S.; Zamborsky, R.; Krajciova, L.; Kokavec, M.; Danisovic, L. Medicina (Kaunas) 2020, 56 (4), 153.
https://doi.org/10.3390/medicina56040153

[23]. Yang, X.; Xu, P.; Gao, Q.; Tan, M. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2002, 32 (1), 59-68.

[24]. Sun, Z.; Ding, B.; Wu, B.; You, Y.; Ding, X.; Hou, X. J. Phys. Chem. C Nanomater. Interfaces 2012, 116 (3), 2543-2547.
https://doi.org/10.1021/jp205871a

[25]. Thomas, M. G.; Lawson, C.; Allanson, N. M.; Leslie, B. W.; Bottomley, J. R.; McBride, A.; Olusanya, O. A. Bioorg. Med. Chem. Lett. 2003, 13 (3), 423-426.
https://doi.org/10.1016/S0960-894X(02)00957-5

[26]. Ramadan, E. M.; Abou-Taleb, K. A.; Galal, G. F.; Abdel-Hamid, N. S. Ann. Agric. Sci. 2017, 62 (2), 151-159.
https://doi.org/10.1016/j.aoas.2017.11.002

[27]. Al-Ostoot, F. H.; Stondus, J.; Anthal, S.; Venkatesh, G. D.; Mohammed, Y. H. E.; Sridhar, M. A.; Khanum, S. A.; Kant, R. Eur. J. Chem. 2019, 10 (3), 234-238.
https://doi.org/10.5155/eurjchem.10.3.234-238.1874

[28]. Khamees, H. A.; Mohammed, Y. H. E.; Ananda; Al-Ostoot, F. H.; Sangappa; Alghamdi, S.; Khanum, S. A.; Madegowda, M. J. Mol. Struct. 2020, 1199 (127024), 127024.
https://doi.org/10.1016/j.molstruc.2019.127024

[29]. Khamees, H. A.; Mohammed, Y. H. E.; Swamynayaka, A.; Al-Ostoot, F. H.; Sert, Y.; Alghamdi, S.; Khanum, S. A.; Madegowda, M. ChemistrySelect 2019, 4 (15), 4544-4558.
https://doi.org/10.1002/slct.201900646

[30]. Smith, G.; Lynch, D. E.; Sagatys, D. S.; Kennard, C. H. L.; Katekar, G. F. Aust. J. Chem. 1992, 45 (7), 1101-1108.
https://doi.org/10.1071/CH9921101

[31]. Mohammed, Y. H. I.; Naveen, S.; Mamatha, S. V.; Jyothi, M.; Khanum, S. A.; Lokanath, N. K. IUCrdata 2016, 1 (10), x161714. https://doi.org/10.1107/s2414314616017144.
https://doi.org/10.1107/S2414314616017144

[32]. Ahmad, N. A.; Naveen, S.; Karthik Kumara, K.; Jamalis, J.; Lokanath, N. K. Der Pharma Chem. 2016, 8 (2), 49-53.

[33]. Rigaku, CrystalClear, Rigaku Corporation, Tokyo, Japan, 2011.

[34]. Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (Pt 1), 112-122.
https://doi.org/10.1107/S0108767307043930

[35]. Spek, A. L. Acta Crystallogr. D Biol. Crystallogr. 2009, 65 (Pt 2), 148-155.
https://doi.org/10.1107/S090744490804362X

[36]. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. J. Appl. Crystallogr. 2020, 53 (Pt 1), 226-235.
https://doi.org/10.1107/S1600576719014092

[37]. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Acta Crystallogr. B 2004, 60 (Pt 6), 627-668.
https://doi.org/10.1107/S0108768104020300

[38]. Mackenzie, C. F.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. IUCrJ 2017, 4 (Pt 5), 575-587.
https://doi.org/10.1107/S205225251700848X

[39]. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11 (1), 19-32.
https://doi.org/10.1039/B818330A

[40]. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2007, No. 37, 3814-3816.
https://doi.org/10.1039/b704980c

[41]. Turner, M. J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M. A. J. Phys. Chem. Lett. 2014, 5 (24), 4249-4255.
https://doi.org/10.1021/jz502271c

[42]. Turner, M. J.; Thomas, S. P.; Shi, M. W.; Jayatilaka, D.; Spackman, M. A. Chem. Commun. (Camb.) 2015, 51 (18), 3735-3738.
https://doi.org/10.1039/C4CC09074H

[43]. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14 (11), 1347-1363.
https://doi.org/10.1002/jcc.540141112

[44]. Akhileshwari, P.; Kiran, K. R.; Sridhar, M. A.; Sadashiva, M. P.; Lokanath, N. K. J. Mol. Struct. 2021, 1242 (130747), 130747.
https://doi.org/10.1016/j.molstruc.2021.130747

[45]. Bendjeddou, A.; Abbaz, T.; Ayari, A.; Benahmed, M.; Gouasmia, A.; Villemin, D. Orient. J. Chem. 2016, 32 (2), 799-806.
https://doi.org/10.13005/ojc/320205

[46]. Gasteiger, J.; Li, X.; Rudolph, C.; Sadowski, J.; Zupan, J. J. Am. Chem. Soc. 1994, 116 (11), 4608-4620.
https://doi.org/10.1021/ja00090a009


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Prabhuswamy, A.; Mohammed, Y.; Al-Ostoot, F.; Venkatesh, G.; Anandalwar, S.; Khanum, S.; Krishnappagowda, L. Eur. J. Chem. 2021, 12(3), 304-313. doi:10.5155/eurjchem.12.3.304-313.2099
Prabhuswamy, A.; Mohammed, Y.; Al-Ostoot, F.; Venkatesh, G.; Anandalwar, S.; Khanum, S.; Krishnappagowda, L. Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid. Eur. J. Chem. 2021, 12(3), 304-313. doi:10.5155/eurjchem.12.3.304-313.2099
Prabhuswamy, A., Mohammed, Y., Al-Ostoot, F., Venkatesh, G., Anandalwar, S., Khanum, S., & Krishnappagowda, L. (2021). Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid. European Journal of Chemistry, 12(3), 304-313. doi:10.5155/eurjchem.12.3.304-313.2099
Prabhuswamy, Akhileshwari, Yasser Hussein Eissa Mohammed, Fares Hezam Al-Ostoot, Geetha Doddanahalli Venkatesh, Sridhar Mandayam Anandalwar, Shaukath Ara Khanum, & Lokanath Neratur Krishnappagowda. "Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid." European Journal of Chemistry [Online], 12.3 (2021): 304-313. Web. 28 May. 2023
Prabhuswamy, Akhileshwari, Mohammed, Yasser, Al-Ostoot, Fares, Venkatesh, Geetha, Anandalwar, Sridhar, Khanum, Shaukath, AND Krishnappagowda, Lokanath. "Synthesis, crystal structure elucidation, Hirshfeld surface analysis, 3D energy frameworks and DFT studies of 2-(4-fluorophenoxy) acetic acid" European Journal of Chemistry [Online], Volume 12 Number 3 (30 September 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.3.304-313.2099


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(3), 304-313 | doi: https://doi.org/10.5155/eurjchem.12.3.304-313.2099 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.