European Journal of Chemistry

Metal oxide nanofillers induced changes in material properties and related applications of polymer composites

Crossmark


Main Article Content

Murad Qassim Abdulraqeb Al-Gunaid
Gayitri Hebbur Maheshwarappa
Shashikala Badaga Shivanna
Mohammed Ali Hussein Dhaif-Allah
Waled Abdo Ahmed
Fares Hezam Al-Ostoot

Abstract

Nanometal oxides have attracted considerable research interest because of the widespread applications in which nanomaterials can be synthesised in various oxide forms that can adopt various structural geometries with unique electronic band structures. Additionally, nanometal oxides provide unique features imputed to quantum confinement effects that stimulate changes in their optical, electrical, and optoelectronic behaviours. Meanwhile, introducing such nanometal oxides into host polymeric materials enables the formation of advanced polymeric nanocomposites with versatile properties. Even so, the utilisation of such nanocomposites in diverse potential applications requires a fundamental understanding of their inherent material functionalities. Therefore, this document aims to demonstrate the importance of polymer nanocomposites with a special focus on the impact of nanometal oxides to enhance the optical and electrical behaviours of polymer composites for advanced optoelectronic and energy storage applications.


icon graph This Abstract was viewed 567 times | icon graph Article PDF downloaded 264 times

How to Cite
(1)
Al-Gunaid, M. Q. A.; Maheshwarappa, G. H.; Shivanna, S. B.; Dhaif-Allah, M. A. H.; Ahmed, W. A.; Al-Ostoot, F. H. Metal Oxide Nanofillers Induced Changes in Material Properties and Related Applications of Polymer Composites. Eur. J. Chem. 2023, 14, 401-413.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Feng, C.; Kou, X.; Chen, B.; Qian, G.; Sun, Y.; Lu, G. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties. Sens. Actuators B Chem. 2017, 253, 584-591.
https://doi.org/10.1016/j.snb.2017.06.115

[2]. Wei, Y.; Wang, X.; Yi, G.; Zhou, L.; Cao, J.; Sun, G.; Chen, Z.; Bala, H.; Zhang, Z. Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties. Mater. Sci. Semicond. Process. 2018, 75, 327-333.
https://doi.org/10.1016/j.mssp.2017.11.007

[3]. Mühlberg, M. Retraction: Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 15189-15189.
https://doi.org/10.1039/D0TA90164D

[4]. Goswami, C.; Hazarika, K. K.; Bharali, P. Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater. Sci. Energy Technol. 2018, 1, 117-128.
https://doi.org/10.1016/j.mset.2018.06.005

[5]. Leng, Y.; Guo, W.; Shi, X.; Li, Y.; Xing, L. Polyhydroquinone-coated Fe3O4 nanocatalyst for degradation of rhodamine B based on sulfate radicals. Ind. Eng. Chem. Res. 2013, 52, 13607-13612.
https://doi.org/10.1021/ie4015777

[6]. Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100-3128.
https://doi.org/10.1039/C8CS00024G

[7]. Kumar, P.; Rawat, N.; Hang, D.-R.; Lee, H.-N.; Kumar, R. Controlling band gap and refractive index in dopant-free α-Fe2O3 films. Electron. Mater. Lett. 2015, 11, 13-23.
https://doi.org/10.1007/s13391-014-4002-0

[8]. Goh, E. G.; Xu, X.; McCormick, P. G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater. 2014, 78-79, 49-52.
https://doi.org/10.1016/j.scriptamat.2014.01.033

[9]. Ali, A.; Rahman, G.; Ali, T.; Nadeem, M.; Hasanain, S. K.; Sultan, M. Enhanced band edge luminescence of ZnO nanorods after surface passivation with ZnS. Physica E Low Dimens. Syst. Nanostruct. 2018, 103, 329-337.
https://doi.org/10.1016/j.physe.2018.06.028

[10]. Camargo, P. H. C.; Satyanarayana, K. G.; Wypych, F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1-39.
https://doi.org/10.1590/S1516-14392009000100002

[11]. Saeed, A. M. N.; Al-Gunaid, M. Q. A.; Siddaramaiah Effect of lithium perchlorate on the optoelectrical and thermal properties of poly(vinylpyrrolidone)/nano-cesium aluminate solid polymer electrolytes. Polym. Plast. Technol. Eng. 2018, 57, 1554-1566.
https://doi.org/10.1080/03602559.2017.1410841

[12]. Alkanad, K.; Hezam, A.; Sujay Shekar, G. C.; Drmosh, Q. A.; Amrutha Kala, A. L.; AL-Gunaid, M. Q. A.; Lokanath, N. K. Magnetic recyclable α-Fe2O3-Fe3O4/Co3O4-CoO nanocomposite with a dual Z-scheme charge transfer pathway for quick photo-Fenton degradation of organic pollutants. Catal. Sci. Technol. 2021, 11, 3084-3097.
https://doi.org/10.1039/D0CY02280B

[13]. Liu, X.; Jiang, Z.; Li, J.; Zhang, Z.; Ren, L. Super-hydrophobic property of nano-sized cupric oxide films. Surf. Coat. Technol. 2010, 204, 3200-3204.
https://doi.org/10.1016/j.surfcoat.2010.03.012

[14]. Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402-434.
https://doi.org/10.1039/C6EE02265K

[15]. Toroker, M. C.; Carter, E. A. Transition metal oxide alloys as potential solar energy conversion materials. J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 2474-2484.
https://doi.org/10.1039/c2ta00816e

[16]. Lany, S. Semiconducting transition metal oxides. J. Phys. Condens. Matter 2015, 27, 283203.
https://doi.org/10.1088/0953-8984/27/28/283203

[17]. Elilarassi, R.; Chandrasekaran, G. Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. J. Mater. Sci.: Mater. Electron. 2010, 21, 1168-1173.
https://doi.org/10.1007/s10854-009-0041-y

[18]. Cho, S.; Jung, S.-H.; Lee, K.-H. Morphology-controlled growth of ZnO nanostructures using microwave irradiation: From basic to complex structures. J. Phys. Chem. C Nanomater. Interfaces 2008, 112, 12769-12776.
https://doi.org/10.1021/jp803783s

[19]. Janotti, A.; Van de Walle, C. G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501.
https://doi.org/10.1088/0034-4885/72/12/126501

[20]. Look, D. C.; Leedy, K. D.; Vines, L.; Svensson, B. G.; Zubiaga, A.; Tuomisto, F.; Doutt, D. R.; Brillson, L. J. Self-compensation in semiconductors: The Zn vacancy in Ga-doped ZnO. Phys. Rev. B 2011, 84, 115202.
https://doi.org/10.1103/PhysRevB.84.115202

[21]. Puchala, B.; Morgan, D. Publisher's Note: Stable interstitial dopant-vacancy complexes in ZnO [Phys. Rev. B 85, 195207 (2012)]. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 079908.
https://doi.org/10.1103/PhysRevB.87.079908

[22]. Baek, S.-D.; Biswas, P.; Kim, J.-W.; Kim, Y. C.; Lee, T. I.; Myoung, J.-M. Low-temperature facile synthesis of Sb-doped p-type ZnO nanodisks and its application in homojunction light-emitting diode. ACS Appl. Mater. Interfaces 2016, 8, 13018-13026.
https://doi.org/10.1021/acsami.6b03258

[23]. Han, N. S.; Shim, H. S.; Seo, J. H.; Kim, S. Y.; Park, S. M.; Song, J. K. Defect states of ZnO nanoparticles: Discrimination by time-resolved photoluminescence spectroscopy. J. Appl. Phys. 2010, 107, 084306.
https://doi.org/10.1063/1.3382915

[24]. Borysiewicz, M. A. ZnO as a functional material, a review. Crystals (Basel) 2019, 9, 505.
https://doi.org/10.3390/cryst9100505

[25]. Alvi, N. H.; ul Hasan, K.; Nur, O.; Willander, M. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett. 2011, 6, 130.
https://doi.org/10.1186/1556-276X-6-130

[26]. Lee, Y.-S.; Gopi, C. V. V. M.; Eswar Reddy, A.; Nagaraju, C.; Kim, H.-J. High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu-ZnS passivation layer. New J Chem 2017, 41, 1914-1917.
https://doi.org/10.1039/C6NJ03898K

[27]. Devan, R. S.; Patil, R. A.; Lin, J.-H.; Ma, Y.-R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326-3370.
https://doi.org/10.1002/adfm.201201008

[28]. Scotti, N.; Monticelli, D.; Zaccheria, F. Dispersed copper oxide: A multifaceted tool in catalysis. Inorganica Chim. Acta 2012, 380, 194-200.
https://doi.org/10.1016/j.ica.2011.10.001

[29]. Hassan, M. S.; Amna, T.; Yang, O.-B.; El-Newehy, M. H.; Al-Deyab, S. S.; Khil, M.-S. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf. B Biointerfaces 2012, 97, 201-206.
https://doi.org/10.1016/j.colsurfb.2012.04.032

[30]. Navidpour, A. H.; Abbasi, S.; Li, D.; Mojiri, A.; Zhou, J. L. Investigation of advanced oxidation process in the presence of TiO2 semiconductor as photocatalyst: Property, principle, kinetic analysis, and photocatalytic activity. Catalysts 2023, 13, 232.
https://doi.org/10.3390/catal13020232

[31]. Singh, M. K.; Mehata, M. S. Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik (Stuttg.) 2019, 193, 163011.
https://doi.org/10.1016/j.ijleo.2019.163011

[32]. Motoyoshi, R.; Oku, T.; Kidowaki, H.; Suzuki, A.; Kikuchi, K.; Kikuchi, S.; Jeyadevan, B. Structure and photovoltaic activity of cupric oxide-based thin film solar cells. J. Ceram. Soc. Japan 2010, 118, 1021-1023.
https://doi.org/10.2109/jcersj2.118.1021

[33]. Moura, A. P.; Cavalcante, L. S.; Sczancoski, J. C.; Stroppa, D. G.; Paris, E. C.; Ramirez, A. J.; Varela, J. A.; Longo, E. Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Adv. Powder Technol. 2010, 21, 197-202.
https://doi.org/10.1016/j.apt.2009.11.007

[34]. Gao, L.; Pang, C.; He, D.; Shen, L.; Gupta, A.; Bao, N. Synthesis of hierarchical nanoporous microstructures via the Kirkendall effect in chemical reduction process. Sci. Rep. 2015, 5, 16061.
https://doi.org/10.1038/srep16061

[35]. Farghali, A. A.; Bahgat, M.; Enaiet Allah, A.; Khedr, M. H. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ. J. Basic Appl. Sci. 2013, 2, 61-71.
https://doi.org/10.1016/j.bjbas.2013.01.001

[36]. Yecheskel, Y.; Dror, I.; Berkowitz, B. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles. Chemosphere 2013, 93, 172-177.
https://doi.org/10.1016/j.chemosphere.2013.05.026

[37]. Aslani, A.; Oroojpour, V. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Physica B Condens. Matter 2011, 406, 144-149.
https://doi.org/10.1016/j.physb.2010.09.038

[38]. Xu, J. F.; Ji, W.; Shen, Z. X.; Li, W. S.; Tang, S. H.; Ye, X. R.; Jia, D. Z.; Xin, X. Q. Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 1999, 30, 413-415.
https://doi.org/10.1002/(SICI)1097-4555(199905)30:5<413::AID-JRS387>3.0.CO;2-N

[39]. Wang, W.; Zhou, Q.; Fei, X.; He, Y.; Zhang, P.; Zhang, G.; Peng, L.; Xie, W. Synthesis of CuO nano- and micro-structures and their Raman spectroscopic studies. CrystEngComm 2010, 12, 2232-2237.
https://doi.org/10.1039/b919043k

[40]. Wu, D.; Zhang, Q.; Tao, M. LSDA+Ustudy of cupric oxide: Electronic structure and native point defects. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 235206.
https://doi.org/10.1103/PhysRevB.73.235206

[41]. Mallick, G.; Labh, J.; Giri, L.; Pandey, A. C.; Karna, S. P. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy. AIP Adv. 2017, 7, 085007.
https://doi.org/10.1063/1.4989977

[42]. Shang, S.; Xue, K.; Chen, D.; Jiao, X. Preparation and characterization of rose-like NiO nanostructures. CrystEngComm 2011, 13, 5094-5099.
https://doi.org/10.1039/c0ce00975j

[43]. Dubal, D. P.; Gomez-Romero, P.; Sankapal, B. R.; Holze, R. Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy 2015, 11, 377-399.
https://doi.org/10.1016/j.nanoen.2014.11.013

[44]. El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 2013, 16, 1747-1752.
https://doi.org/10.1016/j.mssp.2013.05.018

[45]. Abbasi, M. A.; Ibupoto, Z. H.; Hussain, M.; Khan, Y.; Khan, A.; Nur, O.; Willander, M. Potentiometric zinc ion sensor based on honeycomb-like NiO nanostructures. Sensors (Basel) 2012, 12, 15424-15437.
https://doi.org/10.3390/s121115424

[46]. He, T.; Yao, J. Photochromic materials based on tungsten oxide. J. Mater. Chem. 2007, 17, 4547-4557.
https://doi.org/10.1039/b709380b

[47]. Gu, Z.; Ma, Y.; Yang, W.; Zhang, G.; Yao, J. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem. Commun. (Camb.) 2005, 3597-3599.
https://doi.org/10.1039/b505429j

[48]. Polleux, J.; Pinna, N.; Antonietti, M.; Niederberger, M. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 2005, 127, 15595-15601.
https://doi.org/10.1021/ja0544915

[49]. Zhao, Z.-G.; Miyauchi, M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew. Chem. Int. Ed Engl. 2008, 47, 7051-7055.
https://doi.org/10.1002/anie.200802207

[50]. Zhao, Z.-G.; Miyauchi, M. Shape modulation of tungstic acid and tungsten oxide hollow structures. J. Phys. Chem. C Nanomater. Interfaces 2009, 113, 6539-6546.
https://doi.org/10.1021/jp900160u

[51]. Chatterjee, A. Properties improvement of PMMA using nano TiO2. J. Appl. Polym. Sci. 2010, 118, 2890-2897.
https://doi.org/10.1002/app.32567

[52]. Kruenate, J.; Tongpool, R.; Panyathanmaporn, T.; Kongrat, P. Optical and mechanical properties of polypropylene modified by metal oxides. Surf. Interface Anal. 2004, 36, 1044-1047.
https://doi.org/10.1002/sia.1833

[53]. Khanmohammadi, S.; Babazadeh, M. Synthesis of polythiophene/manganese dioxide nanocomposites by in-situ core-shell polymerization method and study of their physical properties. J. Nanostructures 2018, 8, 366-373.

[54]. Mittal, V. Polymer Layered Silicate Nanocomposites: A Review. Materials (Basel) 2009, 2, 992-1057.
https://doi.org/10.3390/ma2030992

[55]. Yasmeen, S.; Iqbal, F.; Munawar, T.; Nawaz, M. A.; Asghar, M.; Hussain, A. Synthesis, structural and optical analysis of surfactant assisted ZnO-NiO nanocomposites prepared by homogeneous precipitation method. Ceram. Int. 2019, 45, 17859-17873.
https://doi.org/10.1016/j.ceramint.2019.06.001

[56]. Al-Gunaid, M. Q. A.; Saeed, A. M. N.; Siddaramaiah Effects of the electrolyte content on the electrical permittivity, thermal stability, and optical dispersion of poly(vinyl alcohol)-cesium copper oxide-lithium perchlorate nanocomposite solid-polymer electrolytes. J. Appl. Polym. Sci. 2018, 135, 45852.
https://doi.org/10.1002/app.45852

[57]. Al-Gunaid, M. Q. A.; Shashikala, B. S.; Gayitri, H. M.; Alkanad, K.; Al-Zaqri, N.; Boshaala, A.; Al-Ostoot, F. H. Characterization of opto-electrical, electrochemical and mechanical behaviors of flexible PVA/(PANI+La2CuO4)/LiClO4-PC polymer blend electrolyte films. Macromol. Res. 2022, 30, 650-658.
https://doi.org/10.1007/s13233-022-0070-4

[58]. Du, J.-H.; Bai, J.; Cheng, H.-M. The present status and key problems of carbon nanotube based polymer composites. EXPRESS Polym. Lett. 2007, 1, 253-273.
https://doi.org/10.3144/expresspolymlett.2007.39

[59]. Alateyah, A. I.; Dhakal, H. N.; Zhang, Z. Y. Processing, properties, and applications of polymer nanocomposites based on layer silicates: A review. Adv. Polym. Technol. 2013, 32.
https://doi.org/10.1002/adv.21368

[60]. Ghezelbash, Z.; Ashouri, D.; Mousavian, S.; Ghandi, A. H.; Rahnama, Y. Surface modified AlO in fluorinated polyimide/AlO nanocomposites: Synthesis and characterization. Bull. Mater. Sci. 2012, 35, 925-931.
https://doi.org/10.1007/s12034-012-0385-4

[61]. Althues, H.; Henle, J.; Kaskel, S. Functional inorganic nanofillers for transparent polymers. Chem. Soc. Rev. 2007, 36, 1454-1465.
https://doi.org/10.1039/b608177k

[62]. Fujita, M.; Idota, N.; Matsukawa, K.; Sugahara, Y. Preparation of oleyl phosphate-modified TiO2/poly(methyl methacrylate) hybrid thin films for investigation of their optical properties. J. Nanomater. 2015, 2015, 1-7.
https://doi.org/10.1155/2015/297197

[63]. Mallakpour, S.; Madani, M. Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly(amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties. Bull. Mater. Sci. (India) 2012, 35, 333-339.
https://doi.org/10.1007/s12034-012-0304-8

[64]. Aminuzzaman, M.; Mitsuishi, M.; Miyashita, T. Surface modification of a flexible polyimide film using a reactive fluorinated polymer nanosheet. Thin Solid Films 2010, 519, 974-977.
https://doi.org/10.1016/j.tsf.2010.08.024

[65]. Babicheva, V. E.; Boltasseva, A.; Lavrinenko, A. V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 2015, 4, 165-185.
https://doi.org/10.1515/nanoph-2015-0004

[66]. Dorranian, D.; Golian, Y.; Hojabri, A. Investigation of nitrogen plasma effect on the nonlinear optical properties of PMMA. J. Theor. Appl. Phys. 2012, 6, 1.
https://doi.org/10.1186/2251-7235-6-1

[67]. Al-Ammar, K.; Hashim, A.; Husaien, M. Synthesis and study of optical properties of (PMMA-CrCl2) composites. Chem. Mater. Eng. 2013, 1, 85-87.
https://doi.org/10.13189/cme.2013.010304

[68]. Mustafa, F. A. Optical properties of NaI doped polyvinyl alcohol films. Physical Sciences Research International 2013, 1, 1-9.
https://doi.org/10.1155/2013/897043

[69]. Quadri, T. W.; Olasunkanmi, L. O.; Fayemi, O. E.; Solomon, M. M.; Ebenso, E. E. Zinc oxide nanocomposites of selected polymers: Synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2017, 2, 8421-8437.
https://doi.org/10.1021/acsomega.7b01385

[70]. Shanshool, H. M.; Yahaya, M.; Yunus, W. M. M.; Abdullah, I. Y. Investigation of energy band gap in polymer/ZnO nanocomposites. J. Mater. Sci.: Mater. Electron. 2016, 27, 9804-9811.
https://doi.org/10.1007/s10854-016-5046-8

[71]. Cao, H. Q.; Qiu, X. Q.; Luo, B.; Liang, Y.; Zhang, Y. H.; Tan, R. Q.; Zhao, M. J.; Zhu, Q. M. Synthesis and room-temperature ultraviolet photoluminescence properties of Zirconia nanowires. Adv. Funct. Mater. 2004, 14, 243-246.
https://doi.org/10.1002/adfm.200305033

[72]. Mallakpour, S.; Shafiee, E. The synthesis of poly(vinyl chloride) nanocomposite films containing ZrO2 nanoparticles modified with vitamin B1 with the aim of improving the mechanical, thermal and optical properties. Des. Monomers Polym. 2017, 20, 378-388.
https://doi.org/10.1080/15685551.2016.1273436

[73]. Mallakpour, S.; Hajjari, Z. Ultrasound-assisted surface treatment of ZrO2 with BSA and incorporating in PVC to improve the properties of the obtained nanocomposites: Fabrication and characterization. Ultrason. Sonochem. 2018, 41, 350-360.
https://doi.org/10.1016/j.ultsonch.2017.09.041

[74]. Taha, T. A.; Hendawy, N.; El-Rabaie, S.; Esmat, A.; El-Mansy, M. K. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. (Berl.) 2019, 76, 4769-4784.
https://doi.org/10.1007/s00289-018-2633-2

[75]. Shivanna, S. B.; Al-Gunaid, M. Q. A.; Al-Ostoot, F. H.; Al-Zaqri, N.; Boshaala, A.; Siddaramaiah; Anasuya, S. J. Probing optical efficiency and electrochemical behaviors of polycarbonate incorporating conducting PANI and halloysite nanotubes (HNTs) as core-shell nanofillers. Polym. Bull. (Berl.) 2022, 79, 10333-10355.
https://doi.org/10.1007/s00289-022-04141-1

[76]. Hanumaiah Anupama, B.; AL-Gunaid, M. Q. A.; Shivanna Shasikala, B.; Theranya Ereppa, S.; Kavya, R.; Hatna Siddaramaiah, B.; Sangameshwara Madhukar, B. Poly (o‐anisidine) encapsulated K 2 ZrO 3 nano‐core based gelatin nano composites: Investigations of optical, thermal, microcrystalline and morphological characteristics. ChemistrySelect 2022, 7, e202201621.
https://doi.org/10.1002/slct.202201621

[77]. Al-Hakimi, A. N.; Asnag, G. M.; Alminderej, F.; Alhagri, I. A.; Al-Hazmy, S. M.; Qahtan, T. F. Enhancing the structural, optical, thermal, and electrical properties of PVA filled with mixed nanoparticles (TiO2/Cu). Crystals (Basel) 2023, 13, 135.
https://doi.org/10.3390/cryst13010135

[78]. Duchaniya, R. K.; Choudhary, N. Synthesis and characterization of PVA/TiO2 nanocomposite . Key Eng. Mater. 2017, 737, 242-247.
https://doi.org/10.4028/www.scientific.net/KEM.737.242

[79]. Li, Y.; Zhang, Z.; Zhu, J. Broadband optical limiting properties of Tungsten Trioxide-Poly (Vinyl Alcohol) solid-state nanocomposite films. Opt. Mater. (Amst.) 2021, 119, 111359.
https://doi.org/10.1016/j.optmat.2021.111359

[80]. Selvi, J.; Mahalakshmi, S.; Parthasarathy, V.; Hu, C.; Lin, Y.-F.; Tung, K.-L.; Anbarasan, R.; Annie, A. A. Optical, thermal, mechanical properties, and non‐isothermal degradation kinetic studies on PVA/CuO nanocomposites. Polym. Compos. 2019, 40, 3737-3748.
https://doi.org/10.1002/pc.25235

[81]. Abdullah, O. G.; Aziz, S. B.; Omer, K. M.; Salih, Y. M. Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci.: Mater. Electron. 2015, 26, 5303-5309.
https://doi.org/10.1007/s10854-015-3067-3

[82]. Al-Gunaid, M. Q. A.; Saeed, A. M. N.; Gayitri; Basavarajaiah, S. Impact of nano-perovskite La2CuO4 on dc-conduction, opto-electrical sensing and thermal behavior of PVA nanocomposite films. Polymer-Plastics Technology and Materials 2020, 59, 469-483.
https://doi.org/10.1080/25740881.2019.1669646

[83]. Somesh, T. E.; Al-Gunaid, M. Q. A.; Madhukar, B. S.; Siddaramaiah Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 2019, 30, 37-49.
https://doi.org/10.1007/s10854-018-0226-3

[84]. Gayitri; Al-Gunaid, M.; Madhukar; Siddaramaiah, B.; Prakash, G. Structural, dielectric permittivity and optical characteristics of casting poly vinyl alcohol/calcium nickel aluminate nanocomposite films. Polymer-Plastics Technology and Materials 2019, 58, 1110-1124.
https://doi.org/10.1080/03602559.2018.1542719

[85]. Ung, B.; Dupuis, A.; Stoeffler, K.; Dubois, C.; Skorobogatiy, M. High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. J. Opt. Soc. Am. B 2011, 28, 917-921.
https://doi.org/10.1364/JOSAB.28.000917

[86]. Al-Gunaid, M. Q. A.; Saeed, A. M. N.; Subramani, N. K.; Madhukar, B. S.; Siddaramaiah Optical parameters, electrical permittivity and I-V characteristics of PVA/Cs2CuO2 nanocomposite films for opto-electronic applications. J. Mater. Sci.: Mater. Electron. 2017, 28, 8074-8086.
https://doi.org/10.1007/s10854-017-6513-6

[87]. Mahendia, S.; Kumar Tomar, A.; Goyal, P. K.; Kumar, S. Tuning of refractive index of poly(vinyl alcohol): Effect of embedding Cu and Ag nanoparticles. J. Appl. Phys. 2013, 113, 073103.
https://doi.org/10.1063/1.4792473

[88]. An, N.; Zhuang, B.; Li, M.; Lu, Y.; Wang, Z.-G. Combined theoretical and experimental study of refractive indices of water-acetonitrile-salt systems. J. Phys. Chem. B 2015, 119, 10701-10709.
https://doi.org/10.1021/acs.jpcb.5b05433

[89]. Al-Gunaid, M. Q. A.; Somesh; Gayitri; Al-Ostoot, F. H.; Basavarajaiah, S. Optimized nano-perovskite lanthanum cuprate decorated PVA based solid polymer electrolyte. Polymer-Plastics Technology and Materials 2020, 59, 215-229.
https://doi.org/10.1080/25740881.2019.1634729

[90]. Wang, Z.; Lu, Z.; Mahoney, C.; Yan, J.; Ferebee, R.; Luo, D.; Matyjaszewski, K.; Bockstaller, M. R. Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers. ACS Appl. Mater. Interfaces 2017, 9, 7515-7522.
https://doi.org/10.1021/acsami.6b12666

[91]. Yuwono, A. H.; Liu, B.; Xue, J.; Wang, J.; Elim, H. I.; Ji, W.; Li, Y.; White, T. J. Controlling the crystallinity and nonlinear optical properties of transparent TiO2-PMMA nanohybrids. J. Mater. Chem. 2004, 14, 2978-2987.
https://doi.org/10.1039/B403530E

[92]. Takahashi, S.; Hotta, S.; Watanabe, A.; Idota, N.; Matsukawa, K.; Sugahara, Y. Modification of TiO2 nanoparticles with oleyl phosphate via phase transfer in the toluene-water system and application of modified nanoparticles to cyclo-olefin-polymer-based organic-inorganic hybrid films exhibiting high refractive indices. ACS Appl. Mater. Interfaces 2017, 9, 1907-1912.
https://doi.org/10.1021/acsami.6b13208

[93]. Tsai, C.-M.; Hsu, S.-H.; Ho, C.-C.; Tu, Y.-C.; Tsai, H.-C.; Wang, C.-A.; Su, W.-F. High refractive index transparent nanocomposites prepared by in situ polymerization. J. Mater. Chem. C Mater. Opt. Electron. Devices 2014, 2, 2251-2258.
https://doi.org/10.1039/c3tc32374a

[94]. Dan, S.; Gu, H.; Tan, J.; Zhang, B.; Zhang, Q. Transparent epoxy/TiO2 optical hybrid films with tunable refractive index prepared via a simple and efficient way. Prog. Org. Coat. 2018, 120, 252-259.
https://doi.org/10.1016/j.porgcoat.2018.02.017

[95]. Saeed, A. M. N.; Al-Gunaid, M. Q. A.; Subramani, N. K.; Madhukar; Basavarajaiah, S. Effect of cesium aluminate nanofiller on optical properties of polyvinyl pyrrolidone nanocomposite films. Polym. Plast. Technol. Eng. 2018, 57, 1188-1196.
https://doi.org/10.1080/03602559.2017.1373402

[96]. Choudhary, S.; Sengwa, R. J. ZnO nanoparticles dispersed PVA-PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices. Curr. Appl. Phys. 2018, 18, 1041-1058.
https://doi.org/10.1016/j.cap.2018.05.023

[97]. Liu, C.; Hajagos, T. J.; Chen, D.; Chen, Y.; Kishpaugh, D.; Pei, Q. Efficient one-pot synthesis of colloidal zirconium oxide nanoparticles for high-refractive-index nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 4795-4802.
https://doi.org/10.1021/acsami.6b00743

[98]. Shashikala; Al-Gunaid, M. Q. A.; Anupama; Anasuya; Siddaramaiah Tailoring structural, opto-electrical and electrochemical properties of PC impregnated core-shell (PANI-NaBiO2) nanocomposites. Polymer-Plastics Technology and Materials 2021, 60, 1656-1671.
https://doi.org/10.1080/25740881.2021.1924202

[99]. Bommalapura Hanumaiah, A.; Al-Gunaid, M. Q. A.; Siddaramaiah Performance of nano-K-doped zirconate on modified opto-electrical and electrochemical properties of gelatin biopolymer nanocomposites. Polym. Bull. (Berl.) 2021, 78, 3023-3041.
https://doi.org/10.1007/s00289-020-03251-y

[100]. Xia, Y.; Zhang, C.; Wang, J.-X.; Wang, D.; Zeng, X.-F.; Chen, J.-F. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir 2018, 34, 6806-6813.
https://doi.org/10.1021/acs.langmuir.8b00160

[101]. Gayitri, H. M.; Al-Gunaid, M. Q. A.; AL-Ostoot, F. H.; Al-Zaqri, N.; Boshaala, A.; Gnanaprakash, A. P. Investigation on opto-electrical, structural and electro-chemical performance of PVA/ZnBi2MoO7 hybrid nanocomposites. Polym. Bull. (Berl.) 2023, 80, 773-790.
https://doi.org/10.1007/s00289-021-04056-3

[102]. Ma, C.-C. M.; Chen, Y.-J.; Kuan, H.-C. Polystyrene nanocomposite materials-Preparation, mechanical, electrical and thermal properties, and morphology. J. Appl. Polym. Sci. 2006, 100, 508-515.
https://doi.org/10.1002/app.23221

[103]. Maji, P.; Choudhary, R. B.; Majhi, M. Structural, electrical and optical properties of silane-modified ZnO reinforced PMMA matrix and its catalytic activities. J. Non Cryst. Solids 2017, 456, 40-48.
https://doi.org/10.1016/j.jnoncrysol.2016.10.039

[104]. Morsi, M. A.; Abdelaziz, M.; Oraby, A. H.; Mokhles, I. Structural, optical, thermal, and dielectric properties of polyethylene oxide/ carboxymethyl cellulose blend filled with barium titanate. J. Phys. Chem. Solids 2019, 125, 103-114.
https://doi.org/10.1016/j.jpcs.2018.10.009

[105]. Rajesh; Crasta, V.; Kumar, R.; Shetty, G.; Sangappa, Y.; Kudva, J.; Vijeth Effect of MoO3 nanofiller on structural, optical, mechanical, dielectric and thermal properties of PVA/PVP blend. Mater. Res. Innov. 2020, 24, 270-278.
https://doi.org/10.1080/14328917.2019.1653558

[106]. Chandrakala, H. N.; Ramaraj, B.; Shivakumaraiah; Siddaramaiah Optical properties and structural characteristics of zinc oxidecerium oxide doped polyvinyl alcohol films. J. Alloys Compd. 2014, 586, 333-342.
https://doi.org/10.1016/j.jallcom.2013.09.194

[107]. Suma, G. R.; Subramani, N. K.; Sachhidananda, S.; Satyanarayana, S. V.; Siddaramaiah Optical and electrical evaluation of Ag0.5Cu0.75O introduced poly(vinyl alcohol) based E.Coli sensors. J. Mater. Sci.: Mater. Electron. 2017, 28, 13139-13148.
https://doi.org/10.1007/s10854-017-7148-3

[108]. Saeed, A. M. N.; Hezam, A.; Al-Gunaid, M. Q. A.; Somesh; Siddaramaiah Effect of ethylene carbonate on properties of PVP-CsAlO2-LiClO4 solid polymer electrolytes. Polymer-Plastics Technology and Materials 2021, 60, 132-146.
https://doi.org/10.1080/25740881.2020.1793191

[109]. Saini, I.; Sharma, A.; Dhiman, R.; Aggarwal, S.; Ram, S.; Sharma, P. K. Grafted SiC nanocrystals: For enhanced optical, electrical and mechanical properties of polyvinyl alcohol. J. Alloys Compd. 2017, 714, 172-180.
https://doi.org/10.1016/j.jallcom.2017.04.183

[110]. Gayitri, H. M.; AL-Gunaid, M.; Siddaramaiah; Gnana Prakash, A. P. Investigation of triplex CaAl2ZnO5 nanocrystals on electrical permittivity, optical and structural characteristics of PVA nanocomposite films. Polym. Bull. (Berl.) 2020, 77, 5005-5026.
https://doi.org/10.1007/s00289-019-03069-3

[111]. Rozra, J.; Saini, I.; Sharma, A.; Chandak, N.; Aggarwal, S.; Dhiman, R.; Sharma, P. K. Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater. Chem. Phys. 2012, 134, 1121-1126.
https://doi.org/10.1016/j.matchemphys.2012.04.004

[112]. Cheong, K. Y.; Moon, J. H.; Kim, H. J.; Bahng, W.; Kim, N.-K. Current conduction mechanisms in atomic-layer-deposited HfO2/nitrided SiO2 stacked gate on 4H silicon carbide. J. Appl. Phys. 2008, 103, 084113.
https://doi.org/10.1063/1.2908870

[113]. Mansour, S. A.; Al-Ghoury, M. E.; Shalaan, E.; El Eraki, M. H. I.; Abdel-Bary, E. M. Electrical properties and transport conduction mechanism of nitrile rubber/poly(vinyl chloride) blend. J. Appl. Polym. Sci. 2010, 116, 3134-3139.
https://doi.org/10.1002/app.30934

[114]. Saini, I.; Rozra, J.; Chandak, N.; Aggarwal, S.; Sharma, P. K.; Sharma, A. Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 2013, 139, 802-810.
https://doi.org/10.1016/j.matchemphys.2013.02.035

[115]. Devi, C. U.; Sharma, A. K.; Rao, V. V. R. N. Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater. Lett. 2002, 56, 167-174.
https://doi.org/10.1016/S0167-577X(02)00434-2

[116]. Anjaneyulu, P.; Sangeeth, C. S. S.; Menon, R. Space-charge limited conduction in doped polypyrrole devices. J. Appl. Phys. 2010, 107, 093716.
https://doi.org/10.1063/1.3373393

[117]. El Sayed, A. M.; El-Gamal, S.; Morsi, W. M.; Mohammed, G. Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J. Mater. Sci. 2015, 50, 4717-4728.
https://doi.org/10.1007/s10853-015-9023-z

[118]. Goyal, A.; Sharma, A.; Saini, I.; Chandak, N.; Sharma, P. Tailoring of optical and electrical properties of PMMA by incorporation of Ag nanoparticles. Bull. Mater. Sci. (India) 2017, 40, 615-621.
https://doi.org/10.1007/s12034-017-1434-9

[119]. Mir, S. H.; Nagahara, L. A.; Thundat, T.; Mokarian-Tabari, P.; Furukawa, H.; Khosla, A. Review-organic-inorganic hybrid functional materials: An integrated platform for applied technologies. J. Electrochem. Soc. 2018, 165, B3137-B3156.
https://doi.org/10.1149/2.0191808jes

[120]. Shashikala, B. S.; Al-Gunaid, M. Q. A.; Somesh, T. E.; Anasuya, S. J.; Siddaramaiah Core-shell synergistic effect of (PANI-NaBiO2) incorporated polycarbonate films to photodegradation of MG dye and photovoltaic activity. Polym. Bull. (Berl.) 2022, 79, 7531-7554.
https://doi.org/10.1007/s00289-021-03754-2

[121]. Kausar, A. Potential of Polymer/Graphene Nanocomposite in Electronics. American Journal of Nanoscience and Nanotechnology Research 2018, 6, 1-9, https://core.ac.uk/download/pdf/286338353.pdf.

[122]. Baibarac, M.; Gómez-Romero, P. Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J. Nanosci. Nanotechnol. 2006, 6, 289-302.
https://doi.org/10.1166/jnn.2006.903

[123]. Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. Polymer-based solar cells. Mater. Today (Kidlington) 2007, 10, 28-33.
https://doi.org/10.1016/S1369-7021(07)70276-6

[124]. Park, S. J.; Kwon, O. S.; Lee, J. E.; Jang, J.; Yoon, H. Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors (Basel) 2014, 14, 3604-3630.
https://doi.org/10.3390/s140203604

Supporting Agencies

Most read articles by the same author(s)

Most read articles by the same author(s)

TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).