European Journal of Chemistry 2021, 12(2), 216-221 | doi: https://doi.org/10.5155/eurjchem.12.2.216-221.2101 | Get rights and content

Issue cover




Crossmark

  Open Access OPEN ACCESS | Open Access PEER-REVIEWED | RESEARCH ARTICLE | DOWNLOAD PDF | VIEW FULL-TEXT PDF | TOTAL VIEWS

Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes


Joana Hipolito (1) orcid , Luis Alves (2,*) orcid , Ana Martins (3) orcid

(1) Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
(2) Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Av. Rovisco Pais 1, 1049-003 Lisboa, Portugal
(3) Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
(*) Corresponding Author

Received: 30 Jan 2021 | Revised: 05 Apr 2021 | Accepted: 17 Apr 2021 | Published: 30 Jun 2021 | Issue Date: June 2021

Abstract


New Ti(IV), Zr(IV) and Al(III) salen-based complexes of formulae [(L)TiCl2], 2, [(L)ZrCl2], 3, and [(L){Al(CH2CH(CH3)2)2}2], 4, where L = meso-(R,S)-diphenylethylene-salen, were synthesized in high yields. [(L){Al(CH2CH(CH3)2)2}2] is a bimetallic complex that results from the reaction of H2L with either 1 or 2 equivalent of Al(CH2CH(CH3)2)3. The solid-state molecular structures of compounds 2 and 4·(C7H8) were obtained by single-crystal X-ray diffraction. Crystal data for C44H54Cl2N2O2Ti, (2a): monoclinic, space group C2/c (no. 15), a = 27.384(1) Å, b = 12.1436(8) Å, c = 28.773(2) Å, β = 112.644(2)°, V = 8830.6(9) Å3, Z = 8, μ(MoKα) = 0.350 mm-1, Dcalc = 1.146 g/cm3, 26647 reflections measured (5.204° ≤ 2Θ ≤ 50.7°), 8072 unique (Rint = 0.0967, Rsigma = 0.1241) which were used in all calculations. The final R1 was 0.0640 (I > 2σ(I)) and wR2 was 0.1907 (all data). Crystal data for C62H72Cl2N2O2Ti (2b): monoclinic, space group P21/c (no. 14), a = 19.606(1) Å, b = 12.793(1) Å, c = 23.189(2) Å, β = 105.710(4)°, V = 5599.0(7) Å3, Z = 4, μ(MoKα) = 0.291 mm-1, Dcalc = 1.182 g/cm3, 37593 reflections measured (3.65° ≤ 2Θ ≤ 50.928°), 10304 unique (Rint = 0.0866, Rsigma = 0.1032) which were used in all calculations. The final R1 was 0.0593 (I > 2σ(I)) and wR2 was 0.1501 (all data). Crystal data for C67H97Al2N2O2 (4·(C7H8)): triclinic, space group P-1 (no. 2), a = 10.0619(9) Å, b = 16.612(2) Å, c = 21.308(2) Å, α = 67.193(5)°, β = 78.157(6)°, γ = 77.576(5)°, V = 3176.8(6) Å3, Z = 2, μ(MoKα) = 0.088 mm-1, Dcalc = 1.063 g/cm3, 42107 reflections measured (5.382° ≤ 2Θ ≤ 51.624°), 12111 unique (Rint = 0.0624, Rsigma = 0.0706) which were used in all calculations. The final R1 was 0.0568 (I > 2σ(I)) and wR2 was 0.1611 (all data). The solid-state molecular structure of [(L){Al(CH2CH(CH3)2)2}2] reveals that both metal centres display a slightly distorted tetrahedral geometry bridged by the salen ligand. Both [(L)TiCl2] and [(L)ZrCl2] complexes display octahedral geometry with trans-chlorido ligands.


Announcements


One of our sponsors will cover the article processing fee for all submissions made between May 17, 2023 and May 31, 2023 (Voucher code: SPONSOR2023).

Editor-in-Chief
European Journal of Chemistry

Keywords


Titanium; Zirconium; Aluminum; Salen ligands; X-ray diffraction; Bimetallic complexes

Full Text:

PDF
PDF    Open Access

DOI: 10.5155/eurjchem.12.2.216-221.2101

Links for Article


| | | | | | |

| | | | | | |

| | | |

Related Articles




Article Metrics

icon graph This Abstract was viewed 727 times | icon graph PDF Article downloaded 272 times

Funding information


Fundação para a Ciência e a Tecnologia (UID/QUI/00100/2019 and CATSUS PD/BD/114399/2016), Portugal.

References


[1]. Pessoa, J. C.; Correia, I. Coord. Chem. Rev. 2019, 388, 227-247.
https://doi.org/10.1016/j.ccr.2019.02.035

[2]. Motevalli, M.; Oduwole, A. D.; Parkin, B. C.; Ramnauth, R.; Sullivan, A. C.; Kaltsoyannis, N. Dalton Trans. 2003, 3591-3598.
https://doi.org/10.1039/b304627c

[3]. Rotsch, D. A.; Reinig, K. M.; Weis, E. M.; Taylor, A. B.; Barnes, C. L.; Jurisson, S. S. Dalton Trans. 2013, 42, 11614-11625.
https://doi.org/10.1039/c3dt51198g

[4]. Xie, J.; Lo, P.-K.; Lam, W. W. Y.; Man, W.-L.; Ma, L.; Yiu, S.-M.; Lau, K.-C.; Lau, T.-C. Chem. Commun. (Camb.) 2016, 52, 11430-11433.
https://doi.org/10.1039/C6CC06231H

[5]. Chiang, L.; Allan, L. E. N.; Alcantara, J.; Wang, M. C. P.; Storr, T.; Shaver, M. P. Dalton Trans. 2014, 43, 4295-4304.
https://doi.org/10.1039/C3DT51846A

[6]. Akbari, A.; Ahmadi, M.; Takjoo, R.; Heinemann, F. W. J. Coord. Chem. 2012, 65, 4115-4124.
https://doi.org/10.1080/00958972.2012.733379

[7]. Dyers, L., Jr; Que, S. Y.; VanDerveer, D.; Bu, X. R. Inorg. Chim. Acta 2006, 359, 197-203.
https://doi.org/10.1016/j.ica.2005.06.068

[8]. Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Bahramian, B. J. Iran. Chem. Soc. 2008, 5, 375-383.
https://doi.org/10.1007/BF03245991

[9]. Lee, C. L.; Chen, D.; Chang, X.-Y.; Tang, Z.; Che, C.-M. Organometallics 2020, 39, 2642-2652.
https://doi.org/10.1021/acs.organomet.0c00268

[10]. Shaw, S.; White, J. D. Chem. Rev. 2019, 119, 9381-9426.
https://doi.org/10.1021/acs.chemrev.9b00074

[11]. Hutson, G. E.; Türkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. 2013, 135, 4988-4991.
https://doi.org/10.1021/ja401908m

[12]. White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488-2491.
https://doi.org/10.1021/ol2007378

[13]. Egami, H.; Irie, R.; Sakai, K.; Katsuki, T. Chem. Lett. 2007, 36, 46-47.
https://doi.org/10.1246/cl.2007.46

[14]. McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563-1602.
https://doi.org/10.1021/cr0306945

[15]. Xu, Z.-J.; Fang, R.; Zhao, C.; Huang, J.-S.; Li, G.-Y.; Zhu, N.; Che, C.-M. J. Am. Chem. Soc. 2009, 131, 4405-4417.
https://doi.org/10.1021/ja8086399

[16]. Tai, S.; Maskrey, T. S.; Nyalapatla, P. R.; Wipf, P. Chirality 2019, 31, 1014-1027.
https://doi.org/10.1002/chir.23144

[17]. White, J. D.; Shaw, S. Org. Lett. 2014, 16, 3880-3883.
https://doi.org/10.1021/ol501549x

[18]. Man, W.-L.; Lam, W. W. Y.; Yiu, S.-M.; Lau, T.-C.; Peng, S.-M. J. Am. Chem. Soc. 2004, 126, 15336-15337.
https://doi.org/10.1021/ja045845f

[19]. Kawabata, H.; Omura, K.; Katsuki, T. Tetrahedron Lett. 2006, 47, 1571-1574.
https://doi.org/10.1016/j.tetlet.2005.12.124

[20]. Sun, W.; Herdtweck, E.; Kühn, F. E. New J Chem 2005, 29, 1577-1580.
https://doi.org/10.1039/b509568a

[21]. Kim, S. S.; Rajagopal, G. Synthesis (Mass.) 2003, 2461-2463.
https://doi.org/10.1055/s-2003-42419

[22]. Bismuto, A.; Cucciolito, M. E.; Ruffo, F.; Vitagliano, A.; Curcio, M. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1021-1028.
https://doi.org/10.1080/10426507.2014.952005

[23]. Katsuki, T.; Miyazaki, T. Synlett 2003, 1046-1048.
https://doi.org/10.1055/s-2003-39321

[24]. Yang, Z.; Hu, C.; Duan, R.; Sun, Z.; Zhang, H.; Pang, X.; Li, L. Asian J. Org. Chem. 2019, 8, 376-384.
https://doi.org/10.1002/ajoc.201800695

[25]. Duan, R.; Hu, C.; Li, X.; Pang, X.; Sun, Z.; Chen, X.; Wang, X. Macromolecules 2017, 50, 9188-9195.
https://doi.org/10.1021/acs.macromol.7b01766

[26]. Chen, H.-L.; Dutta, S.; Huang, P.-Y.; Lin, C.-C. Organometallics 2012, 31, 2016-2025.
https://doi.org/10.1021/om201281w

[27]. Cui, Y.; Li, D.; Gao, B.; Zhou, Y.; Chen, L.; Qiu, B.; Li, Y.; Duan, Q.; Hu, N. J. Coord. Chem. 2016, 69, 656-667.
https://doi.org/10.1080/00958972.2015.1121248

[28]. Gaston, A. J.; Navickaite, G.; Nichol, G. S.; Shaver, M. P.; Garden, J. A. Eur. Polym. J. 2019, 119, 507-513.
https://doi.org/10.1016/j.eurpolymj.2019.07.017

[29]. Yu, Y.; Yuan, D.; Wang, Y.; Yao, Y. J. Organomet. Chem. 2016, 819, 37-45.
https://doi.org/10.1016/j.jorganchem.2016.06.020

[30]. Darensbourg, D. J. Chem. Rev. 2007, 107, 2388-2410.
https://doi.org/10.1021/cr068363q

[31]. Decortes, A.; Haak, R. M.; Martín, C.; Belmonte, M. M.; Martin, E.; Benet-Buchholz, J.; Kleij, A. W. Macromolecules 2015, 48, 8197-8207.
https://doi.org/10.1021/acs.macromol.5b01880

[32]. Ambrose, K.; Murphy, J. N.; Kozak, C. M. Inorg. Chem. 2020, 59, 15375-15383.
https://doi.org/10.1021/acs.inorgchem.0c02348

[33]. Davis, A.; Kilner, C. A.; Kee, T. P. Inorg. Chim. Acta 2004, 357, 3493-3502.
https://doi.org/10.1016/j.ica.2004.01.048

[34]. Kim, I.; Ha, Y. S.; Zhang, D. F.; Ha, C.-S.; Lee, U. Macromol. Rapid Commun. 2004, 25, 1319-1323.
https://doi.org/10.1002/marc.200400137

[35]. Gurung, R. K.; McMillen, C. D.; Jarrett, W. L.; Holder, A. A. Inorg. Chim. Acta 2020, 505, 119496.
https://doi.org/10.1016/j.ica.2020.119496

[36]. Gu, W.; Xu, P.; Wang, Y.; Yao, Y.; Yuan, D.; Shen, Q. Organometallics 2015, 34, 2907-2916.
https://doi.org/10.1021/acs.organomet.5b00223

[37]. Saha, T. K.; Ramkumar, V.; Chakraborty, D. Inorg. Chem. 2011, 50, 2720-2722.
https://doi.org/10.1021/ic1025262

[38]. Taheri, O.; Behzad, M.; Ghaffari, A.; Kubicki, M.; Dutkiewicz, G.; Bezaatpour, A.; Nazari, H.; Khaleghian, A.; Mohammadi, A.; Salehi, M. Transit. Met. Chem. 2014, 39, 253-259.
https://doi.org/10.1007/s11243-014-9798-9

[39]. Balakrishnan, C.; Neelakantan, M. A. Inorg. Chim. Acta 2018, 469, 503-514.
https://doi.org/10.1016/j.ica.2017.09.060

[40]. Ghaffari, A.; Behzad, M.; Dutkiewicz, G.; Kubicki, M.; Salehi, M. J. Coord. Chem. 2012, 65, 840-855.
https://doi.org/10.1080/00958972.2012.662275

[41]. Białek, M.; Leksza, A.; Piechota, A.; Kurzak, K.; Koprek, K. J. Polym. Res. 2014, 21, 389.
https://doi.org/10.1007/s10965-014-0389-4

[42]. Van Aelstyn, M. A.; Keizer, T. S.; Klopotek, D. L.; Liu, S.; Munoz-Hernandez, M.-A.; Wei, P.; Atwood, D. A. Organometallics 2000, 19, 1796-1801.
https://doi.org/10.1021/om990829q

[43]. Clegg, W.; Harrington, R. W.; North, M.; Villuendas, P. J. Org. Chem. 2010, 75, 6201-6207.
https://doi.org/10.1021/jo101121h

[44]. Alaaeddine, A.; Roisnel, T.; Thomas, C. M.; Carpentier, J.-F. Adv. Synth. Catal. 2008, 350, 731-740.
https://doi.org/10.1002/adsc.200700565

[45]. Maru, M. S.; Barroso, S.; Adão, P.; Alves, L. G.; Martins, A. M. J. Organomet. Chem. 2018, 870, 136-144.
https://doi.org/10.1016/j.jorganchem.2018.06.011

[46]. SAINT. Bruker AXS Inc. Madison. Wisconsin, USA, 1997-2003.

[47]. SADABS. Bruker AXS Inc. Madison. Wisconsin, USA, 1997-2003.

[48]. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115-119.
https://doi.org/10.1107/S0021889898007717

[49]. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381-388.
https://doi.org/10.1107/S002188980403225X

[50]. Sheldrick, G. M. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[51]. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.
https://doi.org/10.1107/S0021889899006020

[52]. Spek, A. L. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[53]. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[54]. Boyd, C. L.; Toupance, T.; Tyrrell, B. R.; Ward, B. D.; Wilson, C. R.; Cowley, A. R.; Mountford, P. Organometallics 2005, 24, 309-330.
https://doi.org/10.1021/om0493661

[55]. Repo, T.; Klinga, M.; Leskelä, M.; Pietikäinen, P.; Brunow, G. Acta Crystallogr. C 1996, 52, 2742-2745.
https://doi.org/10.1107/S010827019600933X


Supporting information


The Supplementary Material for this article can be found online at: Supplementary files

How to cite


Hipolito, J.; Alves, L.; Martins, A. Eur. J. Chem. 2021, 12(2), 216-221. doi:10.5155/eurjchem.12.2.216-221.2101
Hipolito, J.; Alves, L.; Martins, A. Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes. Eur. J. Chem. 2021, 12(2), 216-221. doi:10.5155/eurjchem.12.2.216-221.2101
Hipolito, J., Alves, L., & Martins, A. (2021). Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes. European Journal of Chemistry, 12(2), 216-221. doi:10.5155/eurjchem.12.2.216-221.2101
Hipolito, Joana, Luis Alves, & Ana Martins. "Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes." European Journal of Chemistry [Online], 12.2 (2021): 216-221. Web. 30 May. 2023
Hipolito, Joana, Alves, Luis, AND Martins, Ana. "Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes" European Journal of Chemistry [Online], Volume 12 Number 2 (30 June 2021)

The other citation formats (EndNote | Reference Manager | ProCite | BibTeX | RefWorks) for this article can be found online at: How to cite item



DOI Link: https://doi.org/10.5155/eurjchem.12.2.216-221.2101


CrossRef | Scilit | GrowKudos | Researchgate | Publons | ScienceGate | Scite | Lens | OUCI

WorldCat Paperbuzz | LibKey Citeas | Dimensions | Semanticscholar | Plumx | Kopernio | Zotero | Mendeley

ZoteroSave to Zotero MendeleySave to Mendeley



European Journal of Chemistry 2021, 12(2), 216-221 | doi: https://doi.org/10.5155/eurjchem.12.2.216-221.2101 | Get rights and content

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Authors

Creative Commons License
This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).



© Copyright 2010 - 2023  Atlanta Publishing House LLC All Right Reserved.

The opinions expressed in all articles published in European Journal of Chemistry are those of the specific author(s), and do not necessarily reflect the views of Atlanta Publishing House LLC, or European Journal of Chemistry, or any of its employees.

Copyright 2010-2023 Atlanta Publishing House LLC. All rights reserved. This site is owned and operated by Atlanta Publishing House LLC whose registered office is 2850 Smith Ridge Trce Peachtree Cor GA 30071-2636, USA. Registered in USA.