European Journal of Chemistry

Synthesis and structural characterization of Ti(III) and Mo(III) complexes supported by PNP pincer ligands

Crossmark


Main Article Content

Rita Ruivo
Luis Alves
Ana Martins

Abstract

New Ti(III) and Mo(III) complexes of formulae [(PNP-Ph)TiCl3], 1, and [(PNP-iPr)MoCl3], 2, where PNP-Ph = N,N’-bis(diphenylphosphino)-2,6-diaminopyridine and PNP-iPr = N,N’-bis(diisopropylphosphino)-2,6-diaminopyridine were synthesised, in moderate yields, by reaction of MCl3·(THF)3 (M = Ti and Mo) with the suitable ligand precursor. The solid-state molecular structures of complexes 1 and 2 were obtained by single-crystal X-ray diffraction. Crystal data for C37H41Cl3N3O2P2Ti (1·(C4H8O)2): triclinic, space group P-1 (no. 2), a = 10.0945(4) Å, b = 10.3002(4) Å, c = 18.6233(7) Å, α = 92.412(2)°, β = 91.108(2)°, γ = 101.705(3)°, V = 1893.65(13) Å3, Z = 2, µ(MoKα) = 0.559 mm-1, Dcalc = 1.361 g.cm-3, 20760 reflections measured (2.021 ≤ Θ ≤ 27.130), 8327 unique (Rint = 0.0399, Rsigma = 0.0414) which were used in all calculations. The final R1 was 0.0316 (I > σ(I)) and wR2 was 0.0850 (all data). Crystal data for C17H33Cl3MoN3P2 (2): tetragonal, space group I41/a (no. 88), a = b = 19.468(4) Å, c = 31.711(6) Å, α = β = γ = 90°, V = 12019(5) Å3, Z = 16, µ(MoKα) = 0.816 mm-1, Dcalc = 1.202 g.cm-3, 42367 reflections measured (2.569 ≤ Θ ≤ 25.347), 5498 unique (Rint = 0.1408, Rsigma = 0.1293) which were used in all calculations. The final R1 was 0.1005 (I > σ(I)) and wR2 was 0.3194 (all data). The coordination geometry around the titanium and molybdenum centers is best described as octahedral, with three donor atoms of the PNP ligand and one chlorine atom occupying the equatorial plane. The axial positions of the octahedron are occupied by the other two chlorido ligands in both complexes. The NH spacer groups in the PNP ligands have an important role in the establishment of hydrogen bonds between the complexes and molecules of the solvent or neighbouring species.


icon graph This Abstract was viewed 530 times | icon graph Article PDF downloaded 207 times icon graph Article CIF FILE downloaded 0 times icon graph Article CIF FILE downloaded 0 times

How to Cite
(1)
Ruivo, R.; Alves, L.; Martins, A. Synthesis and Structural Characterization of Ti(III) and Mo(III) Complexes Supported by PNP Pincer Ligands. Eur. J. Chem. 2023, 14, 311-315.

Article Details

Share
Crossref - Scopus - Google - European PMC
References

[1]. Peris, E.; Crabtree, R. H. Key factors in pincer ligand design. Chem. Soc. Rev. 2018, 47, 1959-1968.
https://doi.org/10.1039/C7CS00693D

[2]. Lawrence, M. A. W.; Green, K.-A.; Nelson, P. N.; Lorraine, S. C. Review: Pincer ligands-Tunable, versatile and applicable. Polyhedron 2018, 143, 11-27.
https://doi.org/10.1016/j.poly.2017.08.017

[3]. van Koten, G.; Milstein, D. Organometallic pincer Chemistry; Springer: Berlin, Germany, 2012.
https://doi.org/10.1007/978-3-642-31081-2

[4]. van Koten, G.; Gossage, R. A. The privileged pincer-metal platform: Coordination chemistry & applications; Springer: Berlin, Germany, 2015.
https://doi.org/10.1007/978-3-319-22927-0

[5]. Murugesan, S.; Kirchner, K. Non-precious metal complexes with an anionic PCP pincer architecture. Dalton Trans. 2016, 45, 416-439.
https://doi.org/10.1039/C5DT03778F

[6]. Bauer, G.; Hu, X. Recent developments of iron pincer complexes for catalytic applications. Inorg. Chem. Front. 2016, 3, 741-765.
https://doi.org/10.1039/C5QI00262A

[7]. Szabó, K. J.; Wendt, O. F. Pincer and pincer-type complexes: Applications in organic synthesis and catalysis; John Wiley & Sons, 2014.
https://doi.org/10.1002/9783527681303

[8]. Gorgas, N.; Alves, L. G.; Stöger, B.; Martins, A. M.; Veiros, L. F.; Kirchner, K. Stable, yet highly reactive nonclassical iron(II) polyhydride pincer complexes: Z-selective dimerization and hydroboration of terminal alkynes. J. Am. Chem. Soc. 2017, 139, 8130-8133.
https://doi.org/10.1021/jacs.7b05051

[9]. Bertini, F.; Glatz, M.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. Carbon dioxide reduction to methanol catalyzed by Mn(I) PNP pincer complexes under mild reaction conditions. ACS Catal. 2019, 9, 632-639.
https://doi.org/10.1021/acscatal.8b04106

[10]. Mastalir, M.; Pittenauer, E.; Stöger, B.; Allmaier, G.; Kirchner, K. Three different reactions, one catalyst: A Cu(I) PNP pincer complex as catalyst for C-C and C-N cross-couplings. Org. Lett. 2017, 19, 2178-2181.
https://doi.org/10.1021/acs.orglett.7b00857

[11]. Ruivo, R.; Alves, L. G.; Kirchner, K.; Martins, A. M. Supramolecular structures of V(III) complexes supported by PNP pincer ligands. J. Mol. Struct. 2017, 1149, 229-234.
https://doi.org/10.1016/j.molstruc.2017.07.066

[12]. Mastalir, M.; Glatz, M.; Stöger, B.; Weil, M.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Synthesis, characterization and reactivity of vanadium, chromium, and manganese PNP pincer complexes. Inorganica Chim. Acta 2017, 455, 707-714.
https://doi.org/10.1016/j.ica.2016.02.064

[13]. Mastalir, M.; de Aguiar, S. R. M. M.; Glatz, M.; Stöger, B.; Kirchner, K. A convenient solvothermal synthesis of group 6 PNP pincer tricarbonyl complexes. Organometallics 2016, 35, 229-232.
https://doi.org/10.1021/acs.organomet.5b00940

[14]. Arashiba, K.; Sasaki, K.; Kuriyama, S.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y. Synthesis and protonation of molybdenum- and tungsten-dinitrogen complexes bearing PNP-type pincer ligands. Organometallics 2012, 31, 2035-2041.
https://doi.org/10.1021/om300011z

[15]. Arashiba, K.; Eizawa, A.; Tanaka, H.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Catalytic nitrogen fixation via direct cleavage of nitrogen-nitrogen triple bond of molecular dinitrogen under ambient reaction conditions. Bull. Chem. Soc. Jpn. 2017, 90, 1111-1118.
https://doi.org/10.1246/bcsj.20170197

[16]. de Aguiar, S. R. M. M.; Stöger, B.; Pittenauer, E.; Puchberger, M.; Allmaier, G.; Veiros, L. F.; Kirchner, K. A complete series of halocarbonyl molybdenum PNP pincer complexes - Unexpected differences between NH and NMe spacers. J. Organomet. Chem. 2014, 760, 74-83.
https://doi.org/10.1016/j.jorganchem.2013.12.018

[17]. Kinoshita, E.; Arashiba, K.; Kuriyama, S.; Eizawa, A.; Nakajima, K.; Nishibayashi, Y. Synthesis and catalytic activity of molybdenum-nitride complexes bearing pincer ligands: Molybdenum-nitride complexes bearing pincer ligands. Eur. J. Inorg. Chem. 2015, 2015, 1789-1794.
https://doi.org/10.1002/ejic.201500017

[18]. de Aguiar, S. R. M. M.; Schröder-Holzhacker, C.; Pecak, J.; Stöger, B.; Kirchner, K. Synthesis and characterization of TADDOL-based chiral group six PNP pincer tricarbonyl complexes. Monatsh. Chem. 2019, 150, 103-109.
https://doi.org/10.1007/s00706-018-2281-0

[19]. Tanaka, H.; Arashiba, K.; Kuriyama, S.; Sasada, A.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. Nat. Commun. 2014, 5, 3737.
https://doi.org/10.1038/ncomms4737

[20]. Álvarez, M.; Galindo, A.; Pérez, P. J.; Carmona, E. Molybdenum and tungsten complexes with carbon dioxide and ethylene ligands. Chem. Sci. 2019, 10, 8541-8546.
https://doi.org/10.1039/C9SC03225H

[21]. Benito-Garagorri, D.; Becker, E.; Wiedermann, J.; Lackner, W.; Pollak, M.; Mereiter, K.; Kisala, J.; Kirchner, K. Achiral and chiral transition metal complexes with modularly designed tridentate PNP pincer-type ligands based on N-heterocyclic diamines. Organometallics 2006, 25, 1900-1913.
https://doi.org/10.1021/om0600644

[22]. Oztopcu, O.; Holzhacker, C.; Puchberger, M.; Weil, M.; Mereiter, K.; Veiros, L. F.; Kirchner, K. Synthesis and characterization of hydrido carbonyl molybdenum and tungsten PNP pincer complexes. Organometallics 2013, 32, 3042-3052.
https://doi.org/10.1021/om400254k

[23]. de Aguiar, S. R. M. M.; Öztopcu, Ö.; Troiani, A.; de Petris, G.; Weil, M.; Stöger, B.; Pittenauer, E.; Allmaier, G.; Veiros, L. F.; Kirchner, K. Formation of mono oxo molybdenum(IV) PNP pincer complexes: Interplay between water and molecular oxygen: Formation of mono oxo molybdenum(IV) PNP pincer complexes: Interplay between water and molecular oxygen. Eur. J. Inorg. Chem. 2018, 2018, 876-884.
https://doi.org/10.1002/ejic.201701413

[24]. Aguiar, S. R. M. M. de; Stöger, B.; Pittenauer, E.; Allmaier, G.; Veiros, L. F.; Kirchner, K. Structural diversity of halocarbonyl molybdenum and tungsten PNP pincer complexes through ligand modifications. Dalton Trans. 2016, 45, 13834-13845.
https://doi.org/10.1039/C6DT02251K

[25]. de Aguiar, S. R. M. M.; Öztopcu, Ö.; Stöger, B.; Mereiter, K.; Veiros, L. F.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Synthesis and reactivity of coordinatively unsaturated halocarbonyl molybdenum PNP pincer complexes. Dalton Trans. 2014, 43, 14669-14679.
https://doi.org/10.1039/C4DT01932F

[26]. Kinoshita, E.; Arashiba, K.; Kuriyama, S.; Miyake, Y.; Shimazaki, R.; Nakanishi, H.; Nishibayashi, Y. Synthesis and catalytic activity of molybdenum-dinitrogen complexes bearing unsymmetric PNP-type pincer ligands. Organometallics 2012, 31, 8437-8443.
https://doi.org/10.1021/om301046t

[27]. Stucke, N.; Krahmer, J.; Näther, C.; Tuczek, F. Molybdenum complexes supported by PN3P pincer ligands: Synthesis, characterization, and application to synthetic nitrogen fixation: Molybdenum complexes supported by PN3P pincer ligands: Synthesis, characterization, and application to synthetic nitrogen fixation. Eur. J. Inorg. Chem. 2018, 2018, 5108-5116.
https://doi.org/10.1002/ejic.201801194

[28]. Itabashi, T.; Mori, I.; Arashiba, K.; Eizawa, A.; Nakajima, K.; Nishibayashi, Y. Effect of substituents on molybdenum triiodide complexes bearing PNP-type pincer ligands toward catalytic nitrogen fixation. Dalton Trans. 2019, 48, 3182-3186.
https://doi.org/10.1039/C8DT04975K

[29]. Schirmer, W.; Flörke, U.; Haupt, H.-J. Darstellung, Eigenschaften und Molekülstrukturen von Komplexen des versteiften dreizähnigen Chelatliganden N,N'-Bis(diphenylphosphino)-2,6-diaminopyridin mit MII - und M0-Ubergangsmetallen [MII = Ni, Pd, Pt; M0 = Cr, Mo, W]. Z. Anorg. Allg. Chem. 1987, 545, 83-97.
https://doi.org/10.1002/zaac.19875450210

[30]. Bruker (1997-2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[31]. Sheldrick, G. M. SADABS, Program for Empirical Absorption Corrections, University of Göttingen, 1996.

[32]. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115-119.
https://doi.org/10.1107/S0021889898007717

[33]. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3-8.
https://doi.org/10.1107/S2053229614024218

[34]. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849-854.
https://doi.org/10.1107/S0021889812029111

[35]. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148-155.
https://doi.org/10.1107/S090744490804362X

[36]. Farrugia, L. J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565-565.
https://doi.org/10.1107/S0021889897003117

[37]. Gong, D.; Liu, W.; Chen, T.; Chen, Z.-R.; Huang, K.-W. Ethylene polymerization by PN3-type pincer chromium(III) complexes. J. Mol. Catal. A Chem. 2014, 395, 100-107.
https://doi.org/10.1016/j.molcata.2014.08.005

[38]. Alzamly, A.; Gambarotta, S.; Korobkov, I. Synthesis, structures, and ethylene oligomerization activity of bis(phosphanylamine)pyridine chromium/aluminate complexes. Organometallics 2013, 32, 7107-7115.
https://doi.org/10.1021/om4008289

[39]. Matayoshi, K.; Seragaki, M.; Mukai, K.; Asato, E.; Takara, S. Synthesis and crystal structure of [RuCl3{N,N′-bis(diphenylphosphino)-2,6-diaminopyridine}]·3CH3OH. X-ray Struct. Anal. Online 2012, 28, 57-58.
https://doi.org/10.2116/xraystruct.28.57

[40]. Haupt, H.-J.; Flörke, U. Crystal structure of N,N'-bis(diphenyl phosphino)-2,6-diaminopyridine-trichloroindium(III) bis-(tetra hydrofurane), (NHP(C6H5)2)2(C5H3N)Cl3In(C4H8O)2. Z. Kristallogr. Cryst. Mater. 1991, 196, 299-301.
https://doi.org/10.1524/zkri.1991.196.14.299

Supporting Agencies

Fundação para a Ciência e a Tecnologia (UID/QUI/00100/2019, UIDB/00100/2020, UIDP/00100/2020, LA/P/0056/2020 and CATSUS PD/BD/135533/2018, Portugal.
Most read articles by the same author(s)
TrendMD

Dimensions - Altmetric - scite_ - PlumX

Downloads and views

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
License Terms

License Terms

by-nc

Copyright © 2024 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at https://www.eurjchem.com/index.php/eurjchem/terms and incorporate the Creative Commons Attribution-Non Commercial (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution, or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (https://www.eurjchem.com/index.php/eurjchem/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).